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applications. In this work, we propose SonicHand, the first smartphone-based 3D hand pose reconstruction
system using purely inaudible acoustic signals. SonicHand incorporates signal processing techniques and a
deep learning framework to address a series of challenges. First, it encodes the topological information of the
hand skeleton as prior knowledge and utilizes a deep learning model to realistically and smoothly reconstruct
the hand poses. Second, the system employs adversarial training to enhance the generalization ability of our
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performs gestures while moving arbitrarily as a whole. We conduct extensive experiments on a smartphone
testbed to demonstrate the effectiveness and robustness of our system from various dimensions. The exper-
iments involve 10 subjects performing up to 12 different hand gestures in three distinctive environments.
When the phone is held in one of the user’s hands, the proposed system can track joints with an average
error of 18.64 mm.
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1 Introduction

With the proliferation of smart devices, there is an increasing need for effective human-computer
interaction techniques, which can precisely capture the activities and poses of the human body,
especially the hand. By accurately reconstructing hand poses, the users are able to manipulate
the objects in the cyber-world with unprecedented precision and enable a large variety of new
applications. For instance, in virtual reality games, a player may use his hands to control the
complicated movement of a virtual character’s hands, which is impossible using traditional
interfaces like a keyboard and mouse. In addition, hand pose reconstruction can enable people
to control the appliances in a smart home. Reconstructing hand poses can be used in robotics as
well. For example, using human hands to control robotic arms is an efficient way to manipulate
objects that cannot be directly handled with human hands. The extensive application scenarios
raise our interest in hand pose reconstruction tasks.

The existing work on hand pose reconstruction mainly adopts computer vision (CV) tech-
niques to generate hand poses with the aid of visual information [9, 22, 30, 58—60, 84, 96]. Despite
their superior accuracy, the risk of privacy disclosure leads to serious concerns about these
methods. In addition to that, CV-based solutions cannot handle cases where there are occlusions
in the line of sight (LOS) and bad lighting conditions. The computational cost of vision-based
approaches are also high, especially when we want to deploy them on smart devices with limited
computational resources. To overcome these limitations, wireless sensing comes into our view.
Thus far, substantial prior studies have been conducted to reconstruct the poses of human body
using radio frequency (RF) signals [1, 20, 69, 83, 91, 92]. However, comparing to the whole body,
the size of the hand is much smaller, which demands higher sensing resolution. RF signals that
require no additional hardware like Wi-Fi suffer from coarse resolution, which makes it imprac-
tical to reconstruct fine-grained hand poses. As for other RF-based solutions with high resolution,
they rely on specialized devices like antenna arrays. Therefore, it is unlikely to build an RF-based
system that is able to precisely reconstruct hand poses using daily smart devices. Fortunately,
acoustic signals are not restricted by the preceding limitations. Low-cost audio infrastructures
such as speakers and microphones are pervasive in smart devices, such as smartphones and
smartwatches. This makes acoustic sensing systems easy to deploy. Moreover, acoustic signals
have the potential to achieve finer resolution due to their relatively low propagation speed. In ad-
dition, the omnidirectional sensing angle brings acoustic sensing adequate flexibility for practical
utilization. Thus, using acoustic signals to reconstruct the user’s hand pose appears to be a feasible
solution.

Nevertheless, precisely reconstructing the hand poses presents us with considerable chal-
lenges. First, compared with the existing approaches that focus on acoustic gesture recognition
[15, 21, 51, 57, 70, 74] which only needs to classify the monitored activity into one of the
predefined classes, and hand tracking [27, 32, 38, 41, 73, 86] that localizes the whole hand as a
single point, hand pose reconstruction is a more challenging task that has never been studied in
the area of acoustic sensing. In this task, we need to infer the 3D location of every hand joint, and
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Fig. 1. lllustration of ultrasonic-based 3D hand pose reconstruction.

the generated hand poses should be realistic looking while being smooth and continuous. Second,
once the model is trained, it should have the generalization ability for cross-environment and
cross-subject inference. Third, the users may also move their hands arbitrarily when performing
gestures, so we need to track the location of the hand as well as reconstructing the hand pose.
To address the challenges discussed previously, we embrace a congruous combination of acoustic
signal processing techniques and deep learning. Specifically, with the help of forward kinematics,
we incorporate some prior knowledge of the hand skeleton into the deep learning model to
reconstruct the hand poses. It enables our system to generate realistic and smooth hand poses. In
addition, we rely on the Doppler frequency shift (DFS) to characterize poses. DFS is only deter-
mined by the velocity of the objects that reflect signals. Therefore, it should not be affected by the
signals reflected from static objects in the environment. However, conducting cross-environment
experiments in real-world scenarios still suffers from performance drop due to the secondary
reflections which are reflected by the hand first and then reflected by the background objects
again. Therefore, to further improve the cross-environment inference performance and tackle the
cross-subject inference problem, we adopt adversarial training on feature representations, which
results in a robust hand pose reconstruction model with the ability of domain generalization. To
handle the case where the hand performs gestures while moving as a whole, we integrate a hand
tracking method, based on the channel impulse response (CIR) estimation, into our system to
measure the hand’s location relative to the phone.

To evaluate the performance of our hand pose reconstruction framework, our acoustic system
is deployed on a smartphone as shown in Figure 1. With the built-in speaker and microphones,
we transmit ultrasonic signals which are completely inaudible and collect the reflected ones. In
the meantime, ground truth poses are captured using Leap Motion Controller (LMC), a vision-
based device, to supervise the training of our deep neural network. The results show that the
average joint localization error for 12 different gestures is 22.87 mm, whose supreme performance
is also validated by the visualization of the reconstructed poses. Since it is natural to interact with
a smartphone by holding it in the hand, we conduct experiments in such a realistic setting as well.
By holding the smartphone in one hand while the other hand performs gestures on the side, the
system can track joints with an average error of 18.64 mm. Extensive experiments are conducted
to verify the robustness of our system in various dimensions.

The main contributions of our work are summarized as follows:

— To the best of our knowledge, our proposed system, SonicHand, is the first smartphone-based
3D hand pose reconstruction system using purely inaudible acoustic signals.

— To realize cross-environment and cross-subject inference, we leverage adversarial training
to achieve satisfying cross-domain inference performance.
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Fig. 2. System overview.

— We design a framework that combines deep learning based hand pose reconstruction and
CIR estimation based hand tracking to reconstruct hand poses while tracking the hand as a
whole.

— We implement the system on a smartphone and conduct comprehensive experiments and an-
alyze its robustness in extensive scenarios to ensure that our system can be used in practical
applications.

The rest of the article is organized as follows. Section 2 introduces the overview of our
acoustic system. Section 3 describes the signal processing techniques, the neural network, and
the adversarial training in our work. Section 4 presents the experiment devices, setup, and results.
Section 5 summarizes the related work. Finally, Section 6 articulates our conclusions.

2 System Overview

We consider a scenario where the human subject is monitored by a smartphone with built-in
speakers and microphones. The goal of the proposed system is to reconstruct the subject’s 3D
hand poses using acoustic signals collected from the smartphone. Figure 2 shows an overview of
our acoustic hand pose reconstruction system, which mainly consists of three components: data
collection, data preprocessing, and hand pose reconstruction:

— Data collection: A smartphone is utilized for transmitting the acoustic signal and collecting
the reflected signal from the subject’s hand. Only one speaker and two microphones on the
smartphone are used. Besides the acoustic data, we also employ the LMC to capture the hand
joint location precisely as the ground truth to train and test the neural network.

— Data Preprocessing: After obtaining the raw data, we demodulate the received signals and
filter out the noise. Then we generate DFS profiles, which would be fed into the deep neural
network to predict each joint’s 3D location relative to the root joint, or wrist. Therefore, we
can consider the wrist to be fixed and call the reconstructed hand pose wrist-fixed 3D hand
pose. To handle the scenario where the user’s hand is moving while performing gestures, we
also localize the hand as a whole to obtain the hand pose whose wrist is moving freely. We
call it wrist-free 3D hand pose as shown in Figure 2.
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Fig. 3. Joint index illustration.

— Hand pose reconstruction: We leverage the power of the deep neural network to learn the
spatial and temporal patterns from the input. With the prior knowledge of the hand structure,
we can generate realistic-looking hand poses that are close to the ground truths. In addition,
adversarial training is incorporated to enhance the generalization ability of the system.

3 Methodology
3.1 Overview

We aim to reconstruct hand poses using acoustic signals, which can be deployed on smartphones
as software without any hardware modification.

The reason we pick the smartphone as the device to play and record acoustic signals is twofold.
On the one hand, the smartphone is the most prevailing smart device with built-in speakers and
microphones. Thus, smartphone-based sensing systems can be widely deployed in the real world.
On the other hand, many applications on smartphones like mobile games take the hand pose as
one of their interaction interfaces to support various fantastic functions. Thus, the smartphone
serves as a proper platform for our system.

We make use of the DFS of the reflected acoustic signal as the feature of the hand movement.
This is because DFS is only determined by the velocities of moving objects. With such a design, our
system possesses the potential to be generalized to different environments. Moreover, generating
DFS through short-time Fourier transform (STFT) is computational efficient, which can cut
down on the time cost of feature extraction. After generating the DFS, we feed it into our deep
learning model to reconstruct the hand pose. To obtain distinguishable DFS, we choose a 20-kHz
sinusoidal signal as the transmitted signal. The reason is that the frequency shift caused by the
hand movement will be centered around 20 kHz. Then we can easily remove the static reflection
with unchanged frequency and capture the DFS.

Despite DFS containing the velocity information about the hand movement, its resolution
is still coarse for fine-grained hand pose reconstruction. In addition, the generated hand poses
should look realistic while being smooth, which is a nontrivial task. To properly reconstruct hand
poses, we make use of forward kinematics [20, 62] to encode the prior knowledge of human
hands’ skeletal structure into our model. To be specific, we treat the segments of the hand as
individual cylinders as shown in Figure 3 and represent the skeleton of the hand as a tree. The
hand joints serve as the nodes, and the hand segments serve as the edges. Then we can estimate
the rotations of hand segments instead of the absolute location of each hand joint, and recursively
generate the joint location from the root joint to the leaf joints by applying the rotations to the
skeletal structure. In this way, our system makes full use of the topological information of the
human hand structure that ensures the generated hand poses look real. Besides that, in our neural
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Fig. 4. Signal processing module.

network, we use a convolutional neural network (CNN) to extract the spatial information and
a recurrent neural network (RNN) to extract temporal features of hand motion. The details
about our model design will be discussed in Section 3.3.

In a wireless sensing area, the signals captured by sensors often contain substantial information
related to both the surrounding environment where the activities are recorded and the human
subject who performs the activities. Thus, a model trained by the data collected from certain
subjects in a specific room usually cannot be applied directly to the data acquired from different
subjects or other rooms. In our case, although DFS is only affected by reflections from moving
targets, the patterns of some secondary reflections with nonzero velocities may also change
in different environments. Different subjects have hands of different sizes and their unique
characteristics when performing gestures. Those are the barriers preventing us from achieving
robust cross-environment and cross-subject hand pose reconstruction. To address this challenge,
we adopt the domain generalization technique to enable cross-environment and cross-subject
inference. Specifically, we propose utilizing adversarial training as a means of improving the
system’s generalization capability. By doing so, we can facilitate cross-domain inference and
enhance the overall performance of the system.

Although our model can precisely predict each joint’s location relative to the root joint, which
is the wrist in our case, there is still a limitation that it assumes the wrist stays at a fixed location.
However, in real-life scenarios, users may perform hand gestures while moving their hands as a
whole. To address this problem, we add a hand tracking function in the signal processing module
to localize the wrist joint while reconstructing the hand pose. Due to the fact that pure tone signal
cannot measure the absolute distance, other signals are required in our system to achieve accurate
hand tracking. We adopt the Zadoff Chu (ZC) sequence [47] for the hand tracking task. The ZC
sequence is able to measure the path length of the reflected signal by estimating the CIR. Details
about our hand tracking method will be discussed in Section 3.2.

3.2 Signal Processing

After we obtain the mixed reflected signals which contain a pure tone sinusoidal signal and ZC
sequence, we process them separately as shown in Figure 4.

Pure Tone Signal Modeling. The transmitted signal would be reflected by the hand and col-
lected by the smartphone. We first apply a high pass filter to extract the pure tone signal R(¢) in
the received signals. R(t) is a mixture of signals reflected from different paths. We have
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L di(t)
R(t) :Rs(t)+ZZA; cos (Zﬂft—ZJTflT -0, (1)
=1

where R(t) represents the signals from static paths (the LOS signal and signals reflected by
stationary objects like walls) and the second term models the signals from the dynamic paths
(the signals reflected by moving objects like hands). Considering the [-th dynamic path R;(¢) =
2A) cos(2r ft—2nf @ —01), 2A] is the amplitude of the received signal, d;(¢) is the time-varying
path length of the [-th path, 27 f @ represents the phase delay caused by the propagation, and c
is the propagation speed of sound in the air which is 340 m/s in our setting. The remaining term
0; is the initial phase that is resulted from the hardware delay and phase inversion due to the
reflection [73].

Pure Tone Signal Demodulation. After extracting the pure tone signals, we use the coherent
detector to demodulate the received sound signals to baseband signals for further processing [61].
Two duplicated received signals are multiplied with the cos(2z ft) and — sin(27x ft), respectively.
The multiplication will generate a low-frequency component and a high-frequency component.
The high-frequency component of each signal can be removed by a low pass filter, then the
in-phase signal and quadrature signal are generated correspondingly. For the [-th dynamic
path, we can get the in-phase signal as Ajcos(-27xf @ — 6;) and the quadrature signal as

A sin(-2n f @ — 0;). Combing these two components as the real and imaginary parts of a
complex signal, we can represent the baseband signal from the L-th dynamic path in the following
complex form:

L
B(t) = By(t) + Z A;e—j(Zﬂfdz(t)/H@z)’ )
I=1
where B;(t) is the static component after demodulation and the second term is the dynamic com-
ponent containing L paths. Since only moving objects can cause frequency shift of the signals, the
static component By(t) can be easily filtered out. Thus, we can consider the sound signals that
travels through the dynamic paths alone. We use By(t) to represent it.
Doppler Frequency Shift. The movement of the subject will lead to the Doppler effect, which
shifts the frequency of the signal collected by the microphone. The DFS is defined as the change
rate of the length of the signal propagation path d(t) as [20, 49, 72]

d
folt) = -3 2-d() ©)

where A is the wavelength of the ultrasonic signals. Then we can finalize our multipath formulation
of the dynamic component with DFS as

L
By(t) = Z ALl [ fo, (du=6;) @)

I=1
Traditional fast Fourier transform generates a spectrum that contains the frequency components
from the entire time period, making it difficult to describe the velocities at each time point. Since
we want to generate a fine-grained DFS profile from B,4(t), STFT is adopted here to quantify the
change of a signal’s frequency content over time [76]. In STFT, a sliding window function is used
to extract the frequency information of a short period of time. In our case, the Blackman window
is chosen to serve this purpose [2]. To achieve desirable resolution in both the time domain and
the frequency domain, we choose a small window size and perform zero padding to increase the

number of data points.
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Fig. 5. The audible leakage analysis for three types of sensing signals on a Google Pixel 2.

Hand Tracking. To achieve precise hand tracking, we first use a ZC sequence to estimate the
CIR of the acoustic signal and then measure the length of the reflection path. We choose the ZC
sequence as our baseband signal because it has conspicuous advantages. First, a ZC sequence has
ideal cross-correlation property, so the generated CIR has sharp peaks for reflection paths. This
property makes it easier to separate different paths in CIR. Second, some other kinds of waveform
that can measure absolute path length like frequency-modulated continuous wave suffer from
audible sound leakage [26], which means that even if the acoustic signal we adopt has a frequency
above the range that human can hear, it still generates annoying audible noise during the sensing
process. In contrast, playing the ZC sequence will not generate any sound in audible frequency
range, even when there is another pure tone signal playing. We conduct experiments to prove that
as shown in Figure 5.

The N, -length ZC sequence is

zc[n] = exp _jw , (5)
Nze
where n € [0, N,.), qis a constant integer, and u € [0, N,.) is the parameter, which is an integer that
satisfies gcd(N,c, u) = 1. In our work, we set N, = 119 and u = 61. After generating the baseband
ZC sequence, we modulate it to inaudible frequency using the OFDM modulation method proposed
in the work of Wan et al. [66].

After the OFDM demodulation,we get the CIR frames along the time axis. The LOS signals of
the microphone that are on the same side of the speaker will generate a peak with the highest
value due to the fact that the LOS signal is much stronger than the reflected signals. We use the
index of this peak in CIR as a reference point and circularly shift the CIR frame until this peak
becomes the first point in CIR to eliminate the time delay of our system. To highlight the weak
reflection path of the hand among all paths in CIR, we take the difference between the consecutive
CIR frames so that the reflection from static objects will be removed and only the moving target
will generate a peak. We can use the index of the peak to estimate the time of flight of the signal
reflected by hand so that we can measure a coarse-grained path length.
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Fig. 6. Model overview.

Due to the fact that the resolution of time-of-flight estimation is limited by the sampling rate
of the acoustic signal, we need to use the phase change of the reflection path to measure fine-
grained path length change to improve the tracking accuracy. We leverage the curvature-based
scheme proposed by Sun et al. [57] to measure the phase change. Combined with the initial absolute
path length estimated by the index of the peak in CIR, we can obtain an absolute reflection path
length for each microphone. After that, we can fuse the path length information from multiple
microphones on the smartphone and utilize the geometric relationship between the speaker and
microphones to localize the hand. Considering that most smartphones have two microphones, we
track the hand movement in a 2D plane.

3.3 Neural Network

To reconstruct the 3D hand poses accurately, even when there is strong noise and interference in
the environment, we develop a deep learning based hand pose reconstruction framework as shown
in Figure 6.

Model Design. In the design of our deep learning model, CNN layers are first used to extract
spatial information from the DFS profile. Four convolutional layers are piled on top of each other,
and each layer’s kernel size is decided by the dimension of input data. After each convolutional
layer, the output will go through a batch normalization layer, a leaky rectified linear unit, and
a dropout layer to normalize the mean and variance, introduce nonlinearity to the model, and
prevent the model from overfitting.

To concentrate on dominating spatial features learned from CNN, we add a self-attention block
to aggregate high-level spatial feature representation. The self-attention block is designed to learn
the relative contributions of each spatial feature to the hand pose we try to reconstruct. We use a
linear mapping function followed by a softmax layer to learn the relative weights.

Then we create a succession of feature vectors after the attention block. Since a hand movement
often takes place over a period of time, the temporal relationships between successive data samples
are highly correlated. We next send feature vectors into an RNN, which is the optimal model for
this purpose since it can connect the hidden states of temporally dependent data, to learn the
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relationship between successive data samples. Specifically, We use long short-term memory
(LSTM) [14], an efficient and popular RNN, to capture relatively long movements. On top of the
CNNss in our model, we added three-layer LSTMs.

To construct the poses of the hand subject through recursively estimating the rotation of the
hand segments, we employ a process called forward kinematics [20, 62]. We follow the mathemat-
ical definition of the forward kinematics process in the work of Jiang et al. [20]. Considering a
hand skeleton tree with N joints, the 3D coordinate of the i-th joint p’ can be obtained given the
location of its parent joint pP*"¢™*(!) and the initial position of p?, pParent().;

pi :pparent(i) + R (p(z) _pgurent(i)) , ©)

where R’ is the rotation matrix of the joint p’ with respect to its parent. To improve the com-
putational efficiency and numerical stability of our model, we leverage unit quaternions [77] to
represent the 3D rotation group. Then we can use both the features extracted by the LSTM and the
prior knowledge of the hand skeleton as the input of forward kinematics layer [62] to generate the
3D joint locations. In this manner, our neural network will concentrate on learning the rotation
features, which are skeleton independent. If the bone structure of the hand subject in terms of
segment length is not accessible, we can either use a conventional hand bone structure or roughly
estimate the hand subject’s bone structure using, for instance, a photo of the hand subject. In such
case, the subject’s hand bone structure is not required in the inference stage, as the hand motion
with the precisely estimated rotations will construct the correct hand motion regardless of the
slight difference between the hand structure we use and the hand structure of the real hand.
Loss Function. The model loss is summarized as follows:

AN N s
LOSS_TZNZ”pt pt||2
i=1 i

i=1

T N
1 1 Ny i_ i
+p ﬁ;ﬁ;'@t_Pt—l)_(pt_pt—l)HH ()
Iy 1y 0] @
o ni _ aparent(i)) i arent(i
R e
where f and y are the hyperparameters to control the weights of different losses. || - || is the

Huber norm. In our case, we utilize SmoothL1Loss' to realize it in our implementation.

The first term in the loss function captures the position loss. This loss is proposed to minimize
the difference between the predicted location of each joint i at each time slot ¢, represented by p!
and the associated ground truth p!. We suppose that the hand skeleton tree has N joints and that
the input DFS sequence has T frames, and we define the position loss as the mean squared error
between p! and p!. The second term in the loss function represents the smooth loss. This loss is
required because the posture of the hand at each time point in posture is handled separately by the
position loss. Thus, the estimated hand pose will be trembling if we only have a position loss. The
last term in the loss function is designed for the rotation loss. The localization error on the joint
position may also accumulate throughout this procedure since the position of a joint is determined
by recursively rotating the joints from the root joint to that joint. If the learned position of a joint’s
parent joint has already strayed from the true position, the position estimation for that joint may
be inaccurate. Therefore, it is required to incorporate a loss to penalize the inaccuracy in a joint’s
relative location to its parents.

Thttps://pytorch.org/docs/stable/generated/torch.nn.SmoothL1Loss.html
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Fig. 7. Adversarial training overview. (By adding bounded perturbations in feature space, there is a great
improvement in the generalization capacity of the regressor.)

3.4 Cross-Domain Inference

Here, we consider a practical problem setting: training and testing data are collected from
different environments or subjects. In the context of this work, a domain is defined as a pair of an
environment and a human subject. Although the main feature our system relies on is the velocity
caused by the hand pose, which should be invariant to the environment, empirical results show
that the performance of cross-environment inference still experiences an unacceptable decline.
The possible reason is that acoustic signals can reflect more than once, so there are paths where the
signals first are reflected by the moving hand and then are reflected again by the static background.
The patterns of those reflections will change in different environments. Although the amplitude of
those reflections are much weaker than the paths only reflected by the hand once, the performance
of the model may drop because it is hard to learn a model that is robust to those perturbations
using a small amount of training data. Additionally, the present work confronts the practical
challenge of cross-subject inference. To overcome the difficulty of cross-domain inference, we
borrow the idea of adversarial training [35, 64] to enhance the generalization capability of our
system.

An overview of our adversarial training method is presented in Figure 7. Our approach parti-
tions the model into a feature extractor (including CNN, attention block, and LSTM architectures)
and a regressor (comprising a linear layer as unit quaternions predictor and forward kinematics,
which predict the hand poses using learned feature representations). We assume that the feature
extracted for the same hand pose is proximal in the feature space. However, with limited data from
a seen domain, there is still significant space in the feature space unexplored where the data from
an unseen domain may reside. To address this issue, adversarial perturbations are added to the
existing training data to simulate the inclusion of data from an unseen domain during training. It
is important to note that this approach is only viable if the feature extracted for a given hand pose
from different domains is also proximal in the feature space. Our preliminary investigations have
revealed that the feature extraction process for a given hand pose collected from different rooms, in
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Fig. 8. The feature histograms exhibit a significant degree of similarity with respect to a given hand pose,
across different environments, without adversarial training.

the absence of adversarial training, exhibits noteworthy similarities, as illustrated in Figure 8. This
matches our intuition because the feature difference between different environments are caused
by weaker secondary reflections, as we mentioned before. Hence, we propose to introduce minor
perturbations within the feature space, which enables the development of a more robust model
capable of generalizing across various domains, even in cases where training data is limited to a
single domain.

Optimization Formulation. With the assumption that the same feature extraction method-
ology is applicable across multiple domains, the training of the pose feature extraction stage
within our neural network pipeline remains unchanged, whereas adversarial training is solely
applied to the regressor. Let us consider a hand poses reconstruction task with an underlying data
distribution 9 over pairs of extracted pose feature representations z € R"™ and corresponding
hand poses (ground truth) sequences p € R™*. It is worth noting that both types of data are time
series data, where the variable ¢ represents the temporal duration. Our goal is to minimize the
discrepancy between predicted hand poses p” and the corresponding ground truth values p. We try
to identify the optimal regressor parameters 6, € R? that minimize the risk E; »)~p[L,(0;,2,p)].
where the predicted hand poses are generated through the use of the regressor, which leverages
pose feature representations directly. The L, means that it is only related to the regressor instead
of the entire neural network.

Based on Figure 8, we can postulate that the pose feature from an unseen domain can be derived
by introducing a minor perturbation to the pose feature from a seen domain if the two domains
are similar. To add proper perturbations to the pose feature representations, we restrict the per-
turbation via a minor constant, denoted as ||z" — z||p < €, where z’ denotes a pose feature from
an unseen domain, z denotes a pose feature from the seen domain, and € captures the similarity
between feature representations. The objective of incorporating perturbations is to maximize the
loss of hand pose reconstruction, corresponding to the worst-case scenario. Minimizing the loss
under such a perturbation can significantly enhance the model’s generalization capacity to the
greatest extent. The optimization is formulated as

minE, ,- max L,(0,,z+ 6, . 8
0, (z,p)~D ”5”73);6 (0r p) (8)

In practice, we use sampled input points to compute the gradients and the expectation in For-
mula (8). As a result, we can simplify the problem by assuming, without loss of generality, that we
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are dealing with an empirical set D over pairs of feature representations and ground truths. The
simplified problem is updated as

néirn(z) max L,(0,,z+d,p). 9)
€

- 16llp<e
D

ALGORITHM 1: Adversarial training ALGORITHM 2: GetPerturbations with Ip-

1: Input: Training data examples X; corresponding10Tm
ground truths P; training iterations I; balance con- 1: Input: Features z; corresponding ground truth p;
trol f; learning rate y. optimization rounds T; perturbation limitation e;

2: learning rate «; regressor parameters 0.

3: Output: Optimized model parameters 6. 2:

4: Initialize the model parameters 6 (which include 3: Output: Optimized perturbation 6.
the feature extraction parameters 0y and the re- 4 Randomly initialize 6 with [[6]|lp < €
gressor parameters 0). 5: for each round t=1to T do

5. for each iterationi=1toIdo 6: 6=06+asign(VsLy(0r,z + 8,p))
6: x « Next batch of examples from X 7: clamp & to ensure [|6|lp < €
7: p < Next batch of ground truths from P 8: end for
8: z « FeatureExtraction(0y,x) 9: return §
9: § «— GetPerturbations (z, p) > Find an
adversarial perturbation for a high loss
10: Of = 9f - ngfL(G, X, p)

11: Or = 0r —yVo, (L(0,x,p) + BLr(Or, 2 + 5, D))
12: end for

The overall adversarial training process is depicted in Algorithm 1 while Algorithm 2 is in-
voked by Algorithm 1 to obtain the optimal perturbation within the feature space. The adversarial
training task can be described as a two-step optimization process. The first step involves an inner
maximization process, where the objective is to identify an adversarial version of a given hand
feature representation z that yields a high loss of hand pose reconstruction (further elaborated in
Algorithm 2):

max L,(0,,z+d,p). (10)

8y <e
The second step, known as the outer minimization process, aims to identify optimal regressor
parameters that minimize the “adversarial loss” obtained in the inner maximization problem:

min > Lr(0r2+5,p). (11)
(z,p)eD

Furthermore, as the generalization ability of our model becomes improved, it is equally impor-
tant to verify that the adversarially trained model performs well on the original training dataset.
To achieve this, we introduce a balance control variable f as a hyperparameter in our adversarial
training algorithm, as shown in step 8 of Algorithm 1. During adversarial training, it governs the
contribution of the adversarial loss under perturbations to the overall loss for the update of the
regressor parameters. This approach allows us to strike a balance between optimizing the model’s

performance in both seen and unseen domains, thereby achieving superior outcomes overall.

4 Experiments
4.1 Testbeds

4.1.1 Leap Motion Controller. In this work, we use the LMC to obtain the ground truth of 3D
hand poses and movements. As a vision-based device, LMC has two infrared light (IR) cameras
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Fig. 9. Testbed setup.

and three IR emitters, which are shown in Figure 9(a). The current application programming
interface of LMC provides the positions in Cartesian space. The LMC itself is the center of the
coordinate system. The origin is located at the top center of the hardware. In our experiments,
the sampling rate of LMC is set to 100 Hz, and this device can estimate the position of hand joints
with errors less than 1.2 mm [75]. Since LMC can only stably track the hands at a maximum
distance of 60 cm, we place LMC below the hand with a vertical distance of 45 cm and connect it
to a laptop to obtain the ground truth data (as shown in Figure 9(c)).

4.1.2  Acoustic Testbed. Our acoustic system can be deployed on most COTS devices with basic
acoustic functionality. In our experiments, we use a smartphone (Google Pixel 2 [78]) as the default
acoustic testbed. We use one speaker and two microphones on the phone. The speaker is used as
the transmitter, and the two microphones are used as receivers. We develop an Android app that
can play 20-kHz pure tone as well as a 16.5- to 19.5-kHz ZC sequence. At the same time, it will
record stereo audio at 44.1 kHz and log the precise timestamps to synchronize with the ground
truths whose timestamp is recorded based on the laptop’s clock. To guarantee the synchronization
between the ground truth data and the collected acoustic data, we use network time protocol to
synchronize the clock between the phone and the laptop. With this approach, we can achieve an
average synchronization error less than 10 ms.

4.2 Data Collection and Preprocessing

In our experiments, 10 volunteers (3 female and 7 male) are employed as human subjects. In the
basic scenario, we consider six different gestures for the hand pose reconstruction task: clench, flip
palm, wave, bend fingers, pinch, and close fingers, which are shown in Figure 10. We extend the
number of gestures to 12 in the following gesture inclusiveness experiments. To simplify the data
collection, we ask each subject to perform each gesture repetitively for 1 minute in each trial. As
shown in Figure 9(c), when we collect data, we fix a single smartphone using a phone tripod. Due
to the fact that most users will keep their hands within 50 cm from the phone during daily use, we
set the horizontal distance between the smartphone and the subject’s hand to 50 cm. The setting
for data collection will be adjusted accordingly in the following various experiments.

We also use the LMC to collect the hand pose data for model training and evaluation while
collecting the acoustic data using the smartphone. The pose data is sampled at a rate of 100 Hz,
and the acoustic data is sampled at a rate of 44.1 kHz. After obtaining raw data, we preprocess the
acoustic data and the pose data separately.

We first extract the 20-kHz pure tone signals using a high pass filter from the collected acoustic
data and demodulate it with a coherent detector as described in Section 3.2. Then, we apply STFT
on the processed data to generate the DFS profiles which contain the velocity information of the
hand movements. We adjust the window size so that the generated DFS profile has 10 frames
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(a) Clench

(d) Bend fingers (e) Pinch (f) Close fingers

Fig. 10. Gestures illustration.

for each second and each frequency bin is nearly 1 Hz. During the whole preprocessing step, we
handle the two microphones’ data separately and only pick the lower 128 frequency bins given
that the frequency shift caused by the hand gestures is usually small. Thus, we can get a 600 X 2
X 128 matrix that can be used as the feature input.

We then downsample the ground truth pose data to a 10-Hz frame rate so that it can be aligned
with the DFS profiles. To obtain uniform sampling periods, we further apply nearest-neighbor
interpolation to them. Since there are 21 joints in our hand skeleton model and the model is in a
3D-coordinate measuring system, we can get a 600 X 21 X 3 matrix as the ground truth.

As for the hand tracking, the length of the baseband ZC sequence (N,.) and the value of u are
set to 119 and 61, respectively. We also modulate the ZC sequence to a central frequency f, = 18
kHz with bandwidth 3 kHz. Therefore, the ZC sequence and the pure tone do not have any overlap
in the frequency domain.

4.3 Model Setting and Implementation

For the stacked four-layer CNNs, we choose 2D convolution operation with the numbers of
convolutional filters as 64, 128, 64, and 1, respectively. Considering the potential overfitting
problem, we add dropout layers [56] to drop out the nodes in our neural network with a dropout
rate of 0.5 at each step during training time. However, applying dropout to a neural network
typically increases the training time. To decrease the number of training epochs required by the
convergence of the deep neural network, we utilize the 2D batch normalization [18] to normalize
the contributions to a layer for every mini-batch. In addition, Leaky ReLU [80] is adopted as an
activation function with a negative slope rate of 0.02 to introduce nonlinearity to the CNNs. To
improve the interpretability of the weight learned by attention block, we also add a softmax as an
activation function after the linear mapping layer. For the three-layer LSTMs, we set the number
of features in the hidden state to 336 and the dropout rate to 0.1. The predefined hyperparameters
in the loss function (i.e., B, y) are set to 1, and the learning rate of Adam is set to 0.001. For
adversarial training, we set the balance control , optimization rounds T, perturbation limitation €,
and learning rate « to 1, 5, 0.01, and 0.001, respectively. By default, we choose l-norm to confine
perturbations.
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(a) Bad lighting scenario (b) Noise scenario (c) Moving interferer scenario

(d) Small conference room (e) Small laboratory (f) Large conference room

Fig. 11. Experimental setup and different environments.

We segment the training data along time axis and generate 1.5-second-long sequences with
overlapping. Then we feed those sequences into our deep learning model. Regarding the testing
data, although we use a fixed length for each sample during the evaluation, it is feasible to input
collected ultrasonic signals of arbitrary length into our system, which will generate a time series
of reconstructed hand poses with an equivalent temporal duration. Finally, the neural network is
implemented using PyTorch [44]. We train the neural network with a batch size of 32 and run
the program on a desktop with an NVIDIA A6000 GPU and an Intel Xeon Gold 6254 CPU. The
inference is conducted on the same machine.

4.4 Experimental Results

We consider different scenarios for the performance evaluation. Specifically, we first consider a
basic scenario where the subjects perform gestures with their right hands without any interference.
Then we evaluate the robustness of the proposed system to different factors, such as a bad lighting
condition, audible noise, and a moving interferer. In addition, we analyze the generalizability of our
model by conducting cross-environment/cross-subject experiments and evaluate the performance
of our system overtime. We further evaluate the performance when our system is handling a hand
that performs gestures while moving as a whole, which is common in real-world applications.
The performance of our system when the phone is held in the hand, which is how most people
use their phones, and the performance on different smartphones are also studied. Additionally,
handling static hand postures is another practical issue we investigate. At the end, we measure the
running time of the proposed system.

4.4.1 Basic Scenario. For the basic scenario, we collect data following the description in
Section 4.2 in a small conference room, which is shown in Figure 11(d). For each trail with 60
seconds of data, we divide the collected data into two parts: 80% of the data (the first 48 seconds)
is used for training and 20% of the data (the remaining 12 seconds) is used for testing. We utilize
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Table 1. Average Joint Localization Errors (in Millimeters) for the Single-Hand Scenario

]I‘l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |Overall

BA |13 19 25 30 19 25 31 35 16 22 28 32 15 21 27 32 16 22 27 33| 23.25

BL |12 18 24 31 19 24 29 34 17 22 27 31 15 21 26 31 14 20 24 28| 22.20

NO |14 20 26 32 19 23 28 32 17 22 26 31 16 21 27 31 16 21 25 30| 22.69

MI |14 19 27 34 23 29 35 43 19 26 32 39 16 23 30 37 16 23 28 34| 26.12

GI |16 20 25 30 18 21 24 27 17 21 26 30 17 23 30 36 18 23 27 31| 22.87
JI, Joint Index; BA, Basic; BL, Bad Lighting; NO, Noise; MI, Moving Interferer; GI, Gesture Inclusiveness.
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Fig. 12. The examples of the constructed hand poses in the basic scenario.

the average joint localization error as the performance metric, which is the average Euclidean
distance between the predicted joint location and the actual joint location over all subjects and
hand poses.

The average joint localization errors for the basic scenario are shown in Table 1 (the “BA” row).
The error for each joint is the average over all testing data of six different hand poses and 10
participants. We also calculate an overall average error for all joints in the last column of Table 1,
which is only 23.25 mm. Considering that we calculate the relative position of each joint with the
wrist location (the origin of the coordinate), the error of the wrist joint is always 0 mm. Therefore,
we only report the results for the other 20 joints. To get a better understanding of how good
our predicted results are, we visualize the reconstructed hand pose and compare them with the
visualized ground truths and the corresponding video frames. As shown in Figure 12, we pick
one example frame for each hand pose. The first row is the video frame captured by the camera
on a smartphone during the data collection process. The second row is visualized by PyOpenGL?
based on the ground truth data collected by the LMC. Our predicted hand poses are visualized in
the same way and shown in the last row. We can observe that the reconstructed hand poses are
realistic looking and almost the same as the ground truths.

Gesture Smoothness Analysis. Besides the average joint localization error, we also evaluate the
smoothness of the reconstruction. Figure 13 shows some consecutive frames of the reconstructed
hand poses for gesture 2 (flip palm) in the basic scenario. The video version® of visualization is
provided as well with a frame rate of 10 Hz. The 12 gestures include 6 in the basic scenario and
the other 6 from the following analysis of gesture inclusiveness. We can see that the reconstructed
poses are close to the ground truth and smooth. This is mainly because we incorporate smooth loss

Zhttps://pyopengl.sourceforge.net/
Shttps://drive.google.com/file/d/1uFFkrnuD2mbf3RoeUo5HYkYdqwOILBjO/view?usp=sharing
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Fig. 13. The consecutive examples of the constructed hand poses for gesture 2 (flip palm) in the basic sce-
nario.

and LSTM into our neural network. The temporal relationships are extracted precisely to exhibit
the correlation between successive data samples. To quantitatively evaluate the effectiveness of the
smooth loss, we further conduct experiments wherein the smooth loss was applied and omitted.
We measure the average displacement of each joint between consecutive frames, serving as an
indicator of smoothness. Specifically, using only the position loss and the rotation loss results
in an average displacement of 5.01 mm. With the help of the smooth loss, this metric drops to
4.45 mm. Concurrently, the average joint localization error exhibited a decline from 24.02 mm to
23.25 mm. Therefore, we can conclude that our loss design can effectively reconstruct hand poses
with a blend of smoothness and accuracy.

STFT Window Size Analysis. We select a proper window size for the STFT to generate DFS
with the expected frame rate. However, that does not mean our model is sensitive to the STFT win-
dow size. To investigate the performance of our system under different window size, we train our
model five times using DFS generated with different STFT window sizes. By modifying the overlap
between consecutive windows, we can still get 10 frames of DFS per second when the window size
changes. The results illustrated in Figure 15(a) shows that the hand pose reconstruction accuracy
is stable, which proves that our system is not sensitive to the STFT window size.

Inference Length Analysis. Although the data length we collect for each subject is fixed, our
model can also deal with flexible lengths of inference data in daily use. To prove this, we con-
duct experiments where we segment sequences with different lengths from the inference data and
feed them to our model. The average joint errors of different inference data lengths are shown in
Figure 15(b). We can find that the performance of our model remains stable when the length of
inference data changes. Therefore, our system can handle real-world cases where the inference
data has an arbitrary length.

Gesture Inclusiveness Analysis. To demonstrate the inclusiveness of our system in recogniz-
ing various gestures, we expand our experiments by considering more gestures. The new gestures
include gestures with minor variations to those already present in our system (pinch middle, pinch
ring, pinch pinky), as well as more intricate gestures (rocker, point, peace) as shown in the video
frame part of Figure 14. Sequentially, we introduce the additional gestures one by one into the
training set, followed by an evaluation of the system’s performance on the corresponding testing
set. The empirical results, depicted in Figure 15(c), substantiate the system’s consistent stability
while accommodating an increasing number of diverse gestures. We further demonstrate the effec-
tiveness of our approach by visualizing the reconstructed poses in Figure 14. We can observe that
the reconstructed hand poses are close to the ground truth while capturing the subtle differences
between similar pinch gestures that use different fingers as shown in Figure 14(a) through 14(c).
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Fig. 14. The examples of the constructed hand poses for additional gestures.
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Fig. 15. Evaluation plots of different lengths of inference data and different number of gestures.

4.4.2 Robustness in Different Scenarios. In real-world applications, acoustic sensing systems
would work in more complicated environments, where many interference factors may produce a
negative impact on the performance. To demonstrate the robustness of our system in practice, we
evaluate the performance of our model in different scenarios. Specifically, we investigate scenarios
involving challenging lighting conditions, audible background noise, and the presence of moving
interferers. In each scenario, we test the inference using the model trained in the basic scenario
directly, which means that collecting new training data for those scenarios is not required.

Robustness to Bad Lighting Conditions. Another advantage of the proposed system over
vision-based methods is that it is robust to bad lighting conditions. To demonstrate this point, we
collect data using the same process as that in the basic scenario after turning off all the lights in the
conference room. As shown in Figure 11(a), there is only some brightness from the smartphone
and the laptop (driving the LMC to collect ground truth). Based on the results shown in the “BL”
row of Table 1, the average joint localization error under bad lighting conditions is similar to that
in the basic scenario. The results show that the bad lighting condition almost has no effect on the
performance of the proposed system.

Robustness to Audible Noise. As an acoustic system, one potential issue is how to deal with
the surrounding noise in real life. Owing to the meticulous choice of the ultrasonic signal, we can
easily filter out all of the audible noise. As shown in Figure 11(b), we play music as background
noise to test the system’s robustness. The intensity level of the background noise is around 60 dB,
which is comparable to the noise level generated by a vacuum cleaner.* The average joint localiza-
tion errors in this scenario are shown in the “NO” row of Table 1. As we can see, the system can
achieve an overall error of 22.69 mm, which demonstrates the robustness of the system to audible
noise.

*https://pulsarinstruments.com/news/decibel-chart-noise-level/
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Table 2. Average Joint Localization Errors (in Millimeters) for the Cross-Environment Scenarios

]I‘l 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20| Overall

BA |13 19 25 30 19 25 31 35 16 22 28 32 15 21 27 32 16 22 27 33| 23.25
CE1|17 25 32 38 23 32 40 47 19 27 34 41 19 26 34 41 20 28 35 42| 29.58
CE2 |16 23 30 35 22 30 38 45 19 26 34 40 18 25 33 40 19 27 33 40| 28.31

In the cross-environment experiments, we use the model trained in the basic scenario to infer the data collected in
another room. JI, Joint Index; BA, Basic; CE1, Room 1 under a cross-environment setting; CE2, Room 2 under a
cross-environment setting.

Robustness to the Moving Interferer. Since static interference exhibits consistent behavior
over time, we address its effect by choosing DFS as the extracted feature that exclusively leverages
changes of the sensing subject. However, the presence of dynamic interference in the environment
may be a confounding factor for the system. In light of this concern, we conduct an experiment to
study the effect of a moving interferer from the surrounding environment as shown in Figure 11(c).
When the user is interacting with the phone, usually the hand is the closest moving object to
the phone. Therefore, we only study the scenario where there is a subject walking behind the
subject who is performing gestures. The results in Table 1 show that the average joint localization
error remains acceptably low, with a recorded value of 26.12 mm. These findings suggest that the
moving interferer that is not very close to the phone does not significantly affect the system’s
overall performance.

4.4.3 Model Generalization. In daily use, our system may be used at different rooms for
different users. It is unfavorable if the users need to collect new training data once they move to a
new room or add a new user. We also want the performance of our system to be stable as time goes
on so that the model does not need to be retrained frequently. Therefore, in this section, we study
whether it is possible to train the system once and then apply it to “anywhere” (cross-environment
inference) for “anybody” (cross-subject inference) at “any time” (stable performance over
time).

Cross-Environment Performance. To explore the possibility of applying the trained model
anywhere, we evaluate the performance of the proposed system for cross-environment pose con-
struction (Table 2). Specifically, we train the model using the data collected in one room (the small
conference room used in the basic scenario as shown in Figure 11(d)) and test it using the data
collected in other rooms (a small laboratory and a large conference room as shown in Figure 11(e)
and Figure 11(f), respectively). We call the small laboratory Room 1 and the large conference room
Room 2 for convenience.

By directly applying the trained model, we find that the cross-environment setting degrades the
performance of the system. To address this challenge, we use adversarial training (as discussed in
Section 3.4) to improve the performance of the system. Specifically, we add minor perturbations
during training to enhance the generalization ability of our model. As mentioned in the work of
Madry et al. [35], besides dealing with the feature representation, perturbations can be introduced
to the raw data as well, whereas the different norms (like I, norm or [, norm) can be utilized to
confine perturbations. Thus, we evaluate the efficacy of adversarial training with different choices
of where to add the perturbation and how to bound it. As shown in Figure 16(b), empirical evidence
demonstrates that the incorporation of I, bounded perturbations in feature space yields the most
effective performance in cross-environment inference. With such an optimized configuration of ad-
versarial training, the performance in cross-environment settings becomes significantly improved
compared to the case where there is no adversarial training applied, which leads to a reduction in
the average joint localization error from 42.78 mm to 29.58 mm for Room 1 and from 41.57 mm to
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Fig. 17. Evaluation plots of cross-subject scenarios and performance over time.

28.31 mm for Room 2 as shown in Figure 16(b). These findings suggest that the system with adver-
sarial training has acceptable generalization ability and can be deployed in a new environment.
Cross-Subject Performance. To further assess whether our model can generalize to new
users, we conduct leave-one-user-out experiments, which means that we train the model using
the data collected from nine subjects and subsequently test it using the data collected from the
remaining one. These experiments also incorporate adversarial training. However, the result in
Figure 17(a) reveals that the average error becomes 39.28 mm despite the help of adversarial
training, which is unsatisfactory. The reason is that different users have unique hand shapes and
their own habits of performing gestures, which makes DFS profiles extracted vary across different
subjects even for the same gesture. Thus, appropriate adaptation is necessary for cross-subject
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scenarios. Specifically, we add few data from the new user into the training process to enhance
the performance. To investigate how much data is required, we pick the user with the worst
performance in Figure 17(a) as the target user in the adaptation experiment. We gradually add
data of the new user into the training process and evaluate the model with the same testing data.
Note that the training data and testing data are never overlapped. From Figure 17(c), we can see
that the performance is improved significantly until the data length used in adaptation reaches 5
seconds. This observation substantiates our contention that 5 seconds of data from each new user
can ensure acceptable performance in the cross-subject scenario. We also repeat the leave-one-out
experiments with 5-second adaption data. As shown in Figure 17(b), the average joint localization
errors are decent, even compared with the one in the basic scenario.

Performance over Time. For the “any time” perspective, we collect data on consecutive days
to evaluate the generalization ability of the model in the temporal dimension. We train the model
using data collected on day 0 and test the model using the data collected on the following 5 days.
As shown in Figure 17(d), the average joint localization error is pretty stable over time. Most of
the average joint localization errors are within 30 mm, which are comparable to the results in the
basic scenario. Thus, our system can be trained once and then used over a long period of time.

4.4.4  Wrist-Free Scenario. When the user’s hand is performing gestures while moving as a
whole, we need to track the location of the hand as the coordinate of the wrist. In this section,
we evaluate the performance of our system in a wrist-free scenario. In this work, we assume that
people use their hand poses to interact with their phones in a restricted area near the phones so
that the patterns of the DFS for each gesture will not change a lot. This setting is reasonable be-
cause it can meet the requirements of many daily applications on smartphones. Therefore, we let
the subjects simultaneously perform gestures and move their hands in an area of 25 X 25 cm in
front of the phone, which is enough to cover the typical area where the users perform their hand
gestures.

Hand Tracking Performance. We first evaluate the hand tracking accuracy of our system. For
each gesture, the subjects will move their hands along six different trajectories in the 25 X 25
cm area. To obtain a stable reflection for initial location estimation, the subjects turn their palms
toward the phone at the beginning of each trajectory. We evaluate the tracking accuracy in a 2D
plane because most smartphones have two available microphones, which are able to support 2D
tracking.

At the beginning, we evaluate the tracking error of our method on a moving hand without any
other gestures as a reference. In such cases, our system can achieve an average 2D tracking error
of 9.0 mm, which is comparable to the state-of-the-art smartphone-based tracking system. Then
the subjects are asked to move their hands and perform gestures. Most of the gestures have aver-
age tracking errors less than 20 mm, as shown in Figure 18. We can observe that hand gestures
will degrade the tracking accuracy, and the impact of gestures on the tracking result depends on
gesture types. For gestures that do not move the palm a lot, such as gesture 6 (close fingers), the
tracking performance can still be good. However, for gesture 2 (flip palm) that rapidly changes the
orientation of the whole palm, our method has limited tracking accuracy. The reason is that the
hand has its own size and can cause a multipath effect. If the shape of the reflection surface that
faces the phone has a significant change, then the multipath effect caused by hand also changes,
which makes the tracking unstable. However, even with different gestures, the hand tracking ac-
curacy of our system is still enough to satisfy the needs of many daily applications that do not
require extremely precise location, such as mobile games.

Wrist-Free Pose Reconstruction. Although the location of the hand can be tracked, the DFS
caused by the hand gesture may also be affected with hand movement. Therefore, we next evaluate
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while the hand is tracked).

whether our system can be trained at a fixed location and tested when the hand is moving around
the training location. We ask each subject to perform each gesture at a fixed location for 60 seconds
as the training set. Then they will perform the same gestures when their hands are moving in the
25 X 25 cm area around this location for another 60 seconds as the testing set. Our study shows
that the average joint localization error of the wrist-free scenario is 32.08 mm, which does not
degrade severely compared to the wrist-fixed pose reconstruction. Therefore, for the users who
interact with their phones with hands in front of their phones, they can directly use the previous
model trained at a location near the phone without the requirement for additional training data
collection.

4.4.5  Practical Issue Analysis. In the deployment of our system within real-world applications,
some practical issues need to be considered. For example, the users may not want to put the phone
on a table or in a holder. Instead, they can hold the phone in one hand while performing gestures
with another hand. Another challenge arises from the fact that many users do not have a leap
motion, leading to difficulties in collecting precise ground truth. In addition, the users may keep
their hands static for a while between gestures, which requires further discussion. Last, whether
different models of smartphones with varying speaker and microphone layouts will affect the
performance is also important when our system is applied in practical use. In this section, we will
discuss those concerns and conduct experiments to prove that our system is able to handle those
practical issues well.

In-Hand Scenario. When the user is interacting with a smartphone, it is natural to hold the
phone in one hand and control the application using the other hand. Therefore, we evaluate our
system in a more realistic scenario, where the subjects hold the phone in their left hand and use
their right hand to perform the gestures defined in the basic scenario. Other settings are also the
same as in the basic scenario. Due to the fact that most of the users feel that it is convenient to
put their hand on the side of the phone during the interaction, the subjects are asked to perform
gestures on the right side as shown in Figure 19(a). We train a model using 80% of the in-hand data
and test it with the remaining 20% data. The results are listed in Table 3. We notice that our system
even achieves better performance in the in-hand experiments than in the basic scenario because
the distance between the hand and the phone is closer in this setting, which results in a better
sensing signal to noise ratio. Those results also prove that omnidirectional acoustic sensing has a
broader sensing angle compared to the camera-based solution, which makes our system suitable
to handle the case where the user performs hand gestures on the side of the phone. Consequently,
we believe that our system is able to be integrated into real-world smartphone applications.
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Table 3. Average Joint Localization Errors (in Millimeters) for the In-Hand Scenario

]I|1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 |Overall

BA|13 19 25 30 19 25 31 35 16 22 28 32 15 21 27 32 16 22 27 33| 23.25
IH |13 15 20 26 15 18 24 29 13 17 22 25 13 17 22 26 14 17 21 25| 18.64
J1, Joint Index; BA, Basic; IH, In-hand scenario.

Collecting Data without a Leap Motion. Due to the fact that not all users have access to leap
motion, acquiring training data could be challenging for them. Hence, we propose an alternative
solution for those users. Specifically, we can employ predefined unified hand poses as the estab-
lished ground truth used for training. To synchronize the collected acoustic data with this ground
truth, the smartphone can showcase a video demonstrating hand gestures while playing acoustic
signals, and the user is asked to perform the gestures following the video guidance. To show the
effectiveness of this method, we conduct experiments where our model is trained using a unified
ground truth. The experimental setup remains the same with the basic scenario, except for a dif-
ference that we choose one subject’s hand poses as the unified ground truth. The model is trained
using the acoustic data from each subject alongside the unified ground truth. Then we assess the
model’s performance using testing data and ground truth from all subjects. In such cases, the av-
erage joint localization error is 27.68 mm, indicating only a minor degradation. This result shows
that our system has the potential to be applied even in the absence of a leap motion.

Handling Static Hand Postures. Previous experiments have demonstrated that our model
accurately reconstructs hand poses when users perform gestures. However, the users’ behaviors
may become more intricate in real-world scenarios. At times, the user may perform a gesture
and maintain the resulting static posture for a while. In such cases, it is expected that our
model will preserve this static posture as the output until the user executes the next gesture. An
intuitive approach to accomplish this goal is to include some static hand postures in our training
data, enabling the model to generate correct hand poses even when the hand is not moving.
Nevertheless, this presents a challenge, as a static hand will not contribute to the DFS profile,
which is used to train our model. Consequently, noise will dominate the profile, making it quite
difficult to train a robust model using such data. Therefore, we design a threshold-based hand
movement segmentation method that utilizes the CIR estimated in the hand tracking module
to precisely segment hand movement. To elaborate, we calculate the differential of CIR [31] to
eliminate the static reflections. Then we measure the amplitude of the highest peak as an indicator
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of hand movement and apply a threshold to segment the discontinuous gestures. The DFS will
be fed into the model to predict the new hand poses only when the hand is engaged in gestures.
Otherwise, if the hand is static, the estimated hand pose will remain unchanged. We ask a subject
to perform a hand gesture, then stay static for a few seconds, and then perform another gesture,
and the result is shown in Figure 19(b). We can clearly see that the amplitude of the highest
peak is obviously larger when there is a hand gesture. Therefore, we can easily set a threshold to
segment the hand gestures to handle the scenario where the user maintains a static hand gesture.

Performance on Different Smartphones. In practical applications, our system will be deployed
to different models of smartphones with different layouts, which raises concerns about whether
the phone model will affect the pose reconstruction accuracy. To evaluate the performance of our
system on different models of smartphones, we conduct experiments using different models of
smartphones to collect data. Besides the Google Pixel 2 used in the basic scenario, we repeat the
experiment in the basic scenario using Samsung Galaxy S9, Motorola moto g pure, and Google
Pixel 4a. For each model of smartphone, 80% of the data is used for training and 20% of the data
is used for testing. According to the results in Figure 16(a), our system achieves the average joint
localization errors of 23.25 mm, 25.31 mm, 24.37 mm, and 22.86 mm, respectively, which shows
that our system can work well on different models of smartphones.

4.4.6  Running Time Analysis on the Smartphone. To demonstrate the efficiency of our pose re-
construction system for deployment on mobile devices, we conduct experiments aimed at evalu-
ating the runtime performance of the proposed methodology. These experiments were conducted
on an OnePlus 9 smartphone using PyTorch Mobile.> Concretely, we separate the process after we
collect the raw data into two steps. First, we measure the time required to extract the DFS feature
from the raw data. Then, the DFS feature will be fed to our deep learning model to assess the
inference time. The result shows that the DFS generation step takes 0.038 seconds while the deep
learning model inference takes 0.019 second for one frame. Therefore, it is short enough to sup-
port a frame rate of 17.5 fps, and it can be further accelerated when deployed on more advanced
smartphones. Thus, our approach has the potential to be implemented as a real-time system.

5 Related Work
5.1 Acoustic Human Sensing

Gesture Recognition. Recently, acoustic signals have widely been used in gesture and activity
recognition applications. Some previous works [5, 15, 21, 46, 51] propose to leverage the Doppler
effect caused by the movement of the hand to recognize different hand gestures. To further improve
the performance, some researchers [57, 70, 74] estimate the CIR of the acoustic signal to achieve
gesture recognition. By estimating CIR using the ZC sequence, VSkin [57] is able to separate the
structure-borne sounds and the air-borne sounds. Then both of them can be used to recognize hand
gestures on the back of mobile devices. Furthermore, Wang et al. [70] propose a system that only
extracts the CIR of the structure-borne component to avoid being interfered by other movements
in the air. Xu et al. [82] use a wristband with a microphone and optic motion sensors to detect
micro finger gestures. Nonetheless, the preceding approaches can only classify coarse-grained
hand gestures and are deficient in the ability to estimate fine-grained hand poses. In our work, we
take advantage of the prior knowledge of the hand skeleton by exploiting forward kinematics [62]
so that our system has the ability to reconstruct the 3D location of every joint of the user’s hand.

Tracking. A large number of researchers [4, 13, 36, 45, 67, 85, 90] focus on how to track a smart
device, such as the smartphone. AAMouse [85] and CAT [36] can track a mobile device based on

Shttps://pytorch.org/mobile/android/
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the DFS caused by the movement of the device. MilliSonic [67] reaches submillimeter 1D tracking
accuracy using the frequency-modulated continuous wave phase. EarphoneTrack [4] localizes the
user by tracking the earphone’s motion. Ge et al. [13] model the sound field when there are two
speakers playing sound simultaneously to localize a smartphone. But those methods are designed
to track a device that can record acoustic signals. Therefore, their methods cannot be directly used
for hand pose reconstruction.

To make the usage more natural, researchers have started to study how to use acoustic signals
to build device-free tracking systems [27, 32, 38, 41, 73, 86], which means that the users do not
have to attach any device or sensors to their body. FingerIO [41] sends OFDM pulses and performs
correlations between the received and transmitted signals to measure the distance. LLAP [73] and
Strata [86] track hand motion using the phase change of the reflected acoustic signals. RTrack [38]
and FM-Track [27] further increase the tracking range and are able to track multiple targets with
the help of microphone arrays. Although many of the preceding approaches have good tracking
accuracy, they consider the whole hand as a point and are unable to localize all joints of the hand,
which means that they are unable to estimate the hand pose well. Our system overcomes this
problem by predicting the rotation of each hand joint and then generating the hand pose with the
help of forward kinematics [62].

Imaging. The existing work that is most similar to ours is acoustic imaging. Traditional acous-
tic imaging methods such as ultrasonography require a large microphone array or a microphone
with precisely controlled motion. In addition, many of them use ultrasonic signals with very high
frequencies that cannot be generated by daily smart devices. The requirement of dedicated devices
makes these methods difficult to implement in daily life. Therefore, some researchers expend their
efforts to achieve acoustic imaging using COTS devices [37, 71]. AIM [37] moves a smartphone
along a predefined trajectory as a virtual microphone array based on a synthetic aperture radar
technique to achieve 2D imaging. However, it requires that the target remain static during the
scanning. Thus, it cannot be used to image a hand that performs gestures. Amaging [71] focuses
on hand shape imaging and is able to handle a moving hand. But it can only estimate a coarse 2D
hand shape, so it cannot be used as a good interface to interact with smart devices. Our system
can precisely reconstruct 3D hand poses of the user, which enables a broader application scenario
than the previous 2D imaging methods.

5.2 RF Signal Based Pose Reconstruction

In recent years, estimating human pose using RF signals has become a popular research area. A few
authors [1, 91, 92] first proposed RF signal-based systems to estimate 2D or 3D human skeletons.
Those works are superior to the vision-based methods when the lighting condition is not good or
there is occlusion between the subject and sensors. However, they all require expensive special-
ized hardware, such as a T-shaped antenna array built and synchronized using USRP. To overcome
this limitation, researchers have started to make efforts in using WiFi signals to estimate human
pose. Wang et al. [69] propose a 2D human pose reconstruction system based on channel state
information extracted from WiFi signals. Thereafter, WiPose [20] and GoPose [50] were proposed
to reconstruct 3D human skeletons from WiFi signals. There are also some works that focus on us-
ing RF signals to extract more information than the skeleton of human subjects. With a mmWave
radar, mmMesh [83] is able to estimate both the body shape and pose of the subjects and then con-
struct the mesh of the body. However, the preceding RF signal based methods can only reconstruct
coarse-grained human poses like the skeleton of the whole body. To reconstruct fine-grained hand
pose, mm4Arm [34] is an indirect method that uses mmWave radar to sense the vibration of the
user’s forearm, which is caused by finger movements. Nonetheless, mmWave signals are highly
directional, which means that the radar needs to face the forearm. This property strictly limits its
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application ranges. On the contrary, the speakers and microphones on the smartphones are omni-
directional, which supports the users while interacting with the phone from anywhere they feel
comfortable. To the best of our knowledge, the system proposed in our work is the first one to use
acoustic signals generated by daily smart devices to estimate fine-grained hand poses.

5.3 3D Hand Pose Reconstruction

Computer Vision Based Methods. Hand pose reconstruction has been studied for a long time
in the CV area. Existing vision-based approaches can be categorized into depth camera based meth-
ods [10, 11, 23, 43, 48, 65, 81] and RGB camera based methods [3, 12, 40, 53-55, 96]. Nonetheless,
vision-based approaches raise the risk of causing privacy issues, as they require recording videos.
Furthermore, the performance of current vision-based methods degrades obviously when the light-
ing condition is poor. In the cases where the hand is occluded, it is hard to retain good performance
in the preceding methods as well. In contrast, our system is based on acoustic signals, which are
not restricted by those limitations.

Wearable Device Based Methods. Wearing specialized devices on the hands is another way to
precisely estimate 3D hand pose. To reconstruct the hand skeleton or mesh of the user, researchers
have developed a variety of systems based on glove-like devices with different kinds of sensors,
such as those described in various works [7, 16, 25, 39, 42, 94]. Digits [24], DorsalNet [79], and
FingerTrak [17] use wrist-mounted cameras or thermal cameras for hand pose reconstruction. All
of the preceding methods require additional costs for the wearable device. Moreover, wearing
such kinds of devices may be troublesome for the users, which narrows the application scenarios
of wearable device based systems. Compared to these works, our system can be easily deployed
with only one smartphone without any other expensive hardware. Additionally, our system is
completely device-free and inaudible, which makes it user-friendly.

5.4 Cross-Domain Inference

Domain Adaptation. Several works [19, 28, 29, 33, 52] aim to extract domain-independent
features leveraging the knowledge from the samples of different domains. Chen et al. [6] and
Zhang et al. [87] utilize data augmentation to increase the capability of cross-domain inference.
Feng et al. [8] and Zhou et al. [95] incorporate meta-learning to address the challenges faced in
domain adaptation. Zhang et al. [88] and Zhang et al. [89] construct domain-transferable mapping
to eliminate the gap between different domains. The scenario we consider suffers from the absence
of target domain data in the training process. As a consequence, conventional domain adaptation
techniques are not readily applicable to our problem.

Domain Generalization. Wang et al. [68] minimize the maximum mean discrepancy between
each pair of source domains to make the feature codes able to be generalized to an unseen domain.
Zheng et al. [93] extract body-coordinate velocity profiles, which are domain independent and
act as unique indicators of gestures. Virmani and Shahzad [63] present a translation function to
automatically generate virtual samples for the target domain under all possible domain configura-
tions. Jiang et al.t [20] extend the body-coordinate velocity profile to a 3D velocity profile that can
capture the movements of the 3D space. Our system is enhanced with the inclusion of physical
domain-independent features (DFS) in conjunction with adversarial training. This approach serves
to augment the system’s domain generalization capacity.

6 Conclusion

In this article, we studied whether inaudible acoustic signals generated by a smartphone have the
ability to accurately estimate fine-grained hand poses. Specifically, we aimed to infer the locations
of all joints in the hand. To this end, we proposed an ultrasonic-based 3D hand pose reconstruction

ACM Trans. Sensor Netw., Vol. 20, No. 5, Article 106. Publication date: August 2024.



106:28 S. Wang et al.

system SonicHand, which relies on a single speaker and two microphones of a smartphone to in-
teract with the user. With the help of forward kinematics and a deep learning model, our system is
able to leverage the topological information of the hand skeleton as prior knowledge and precisely
reconstruct high-quality and realistic-looking hand poses. At the same time, our system has the
generalization ability for cross-environment and cross-subject inference due to the adoption of ad-
versarial training. We also integrated a CIR estimation based hand tracking method into our system
to obtain the location of the hand pose when the hand is moving. We implemented our system on
a smartphone testbed and demonstrated its superior performance through extensive experiments.
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