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ABSTRACT
Millimeter-wave (mmWave) based human activity recognition
(HAR) systems have demonstrated promising performance in var-
ious applications, leveraging the power of deep neural networks.
However, these systems are suffering from the scarcity of available
mmWave data for model training. To address this challenge, we ex-
plore the possibility of transferring knowledge from large AImodels
built on massive text and visual data to enhance the generalizability
of mmWave-based HAR models. Towards this end, we introduce
mmCLIP, a novel system that aligns mmWave signal space and text
space to facilitate zero-shot recognition for unseen activities. To
enable this alignment, we employ cross-modality signal synthesis
to augment mmWave signal data using large human mesh datasets
and design an activity attribute decomposition and recomposition
approach to characterize the semantic interconnections among ac-
tivities. We conducted extensive experiments to demonstrate the
effectiveness of our proposed framework.
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1 INTRODUCTION
With the rising quest for intelligent systems that enhance human
life, human activity recognition (HAR) plays a pivotal element in
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understanding human behavior, which enables a wide spectrum
of applications ranging from healthcare [47, 50, 51] and surveil-
lance [20, 35, 41] to smart homes [2, 38, 45] and human-computer
interactions [31]. A variety of sensors can be utilized for HAR tasks,
including cameras, wearable devices, and wireless signals. Among
them, mmWave has emerged as a particularly advantageous sensing
solution due to its low-cost and high-resolution nature.

However, the generalizability of the mmWave-based HAR re-
mains constrained. The current implementations of mmWave-based
HAR are predominantly tailored for specific, narrowly defined clas-
sification tasks, limiting their ability to identify activities beyond
their initial training scope. This limitation primarily arises from
the insufficiency of available mmWave sensing data, since the data
collection process for mmWave-based HAR is laborious and time-
intensive, requiring specialized hardware and software, significant
participant engagement, as well as meticulous synchronization
and calibration processes. These stringent requirements render
large-scale data collection both financially and logistically pro-
hibitive. Consequently, researchers are often limited to collecting
customized small datasets for their specific tasks, thereby impeding
the advancement of generalizable mmWave-based HAR systems.

In recent years, we have witnessed remarkable advancements
in the field of artificial intelligence (AI), particularly in natural
language processing (NLP) [4, 8, 10, 44] and computer vision
(CV) [37, 43, 55]. The cornerstone of these successes lies in the
utilization of large datasets and expansive models. Scaling laws [24]
have underscored this paradigm, demonstrating that the synergistic
combination of big data and large models yields great generalizabil-
ity. Given these achievements, a fundamental question arises: Is it pos-
sible to transfer the knowledge in large AI models built upon massive
text and visual data to elevate the generalizability of mmWave-based
HAR models?

To answer this question, we introduce mmCLIP, a novel frame-
work designed to harness the knowledge embedded in extensive
computer vision datasets and large language models to perform
mmWave-based zero-shot HAR tasks. The main idea of our ap-
proach is to align the high-level representation space of mmWave
signals with the text semantic space of pre-trained large language
models (LLMs), enabling the framework to leverage the generaliz-
ability of these language models for predicting unseen activities.
However, achieving accurate alignment between these two embed-
ding spaces necessitates a substantial volume of paired signal-text
data with diverse activity samples — a dataset that is neither readily
available nor feasible to collect manually. To address this challenge,
we propose leveraging cross-modality signal synthesis to augment
mmWave signal data from the large human mesh datasets with text
descriptions, thereby facilitating knowledge transfer from visual
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data. This strategy allows us to generate an extensive synthetic
paired dataset, which can be employed to pre-train our model. Then,
we fine-tune the model by collecting a smaller set of real-world
data to bridge the simulation-to-reality gap.

Another challenge is that directly aligning the signal data to the
original text label space may not be able to yield satisfactory gener-
alization results, as the text labels in many cases cannot precisely
characterize human activities and thus may fail to capture the subtle
relationships among different activities. For example, the activities
“drink water” and “pick up an object” appear quite different from
a text label perspective due to the distinct words used. However,
the movements of limbs and torso involved in these activities are
very similar. To capture such similarity, in our model, we introduce
an activity attribute decomposition and recomposition approach.
For instance, during the activity of “sit down”, an individual will
“bend his/her legs”, “keep his/her arms slightly bent forward”, and
“remain stationary”. In this description, we describe the “legs status”,
“arms status”, and “location status” of the subject performing the
activity, regarding these statuses as distinct attributes of the activity.
In our model design, we leverage the knowledge embedded in the
LLMs to decompose the text label into attribute descriptions and
further into text attribute embeddings. In this way, we can charac-
terize the semantic relations among activities, represented as the
similarities of their attribute embeddings. Returning to the example
of “drink water" and “pick up an object," from an attribute perspec-
tive, these two activities share similar descriptions and therefore
have high embedding similarity. This allows the model to capture
the relationship between them. On the other hand, mmWave sig-
nals can also characterize human activities by capturing activity
attributes such as the movements of limbs and torso. In summary,
our model explicitly extracts activity attributes from both signal and
text space, allowing for a more nuanced and accurate representation
of activities and their semantic interconnections.

We conclude the contributions of our paper as follows:

• We propose the mmCLIP framework which aligns the signal
and text embedding space to achieve mmWave-based unseen
activity recognition, where the model has never been trained
on either the mmWave signal data or the exact text label of
the unseen activities.

• We employ cross-modality signal synthesis to augment
mmWave signal data using large human mesh datasets with
text descriptions, thereby expanding the representation of
human activities in signal space. We design an activity at-
tribute decomposition and recomposition approach to char-
acterize human activities from the attribute level, reinforcing
the semantic interconnections among activities as well as
the alignment of signal and text space.

• To evaluate the proposed mmCLIP framework, we con-
structed a real-world human activity recognition testbed
using commercial off-the-shelf (COTS) mmWave devices.

• Our evaluation results demonstrate that the mmCLIP system
achieved an average accuracy of 76.4% on ten-class zero-
shot classification tasks, highlighting the effectiveness of the
mmCLIP framework for zero-shot HAR tasks.

2 SYSTEM OVERVIEW
The goal of our proposed mmCLIP framework is to develop an
mmWave-based zero-shot human activity recognition system. Un-
like conventional activity classifiers that predict the probability dis-
tribution over a fixed set of predetermined classes, mmCLIP aligns
the high-level representation space of mmWave signals with the
text semantic space of large pre-trained language models through
contrastive learning, thereby enabling the framework to leverage
the generalizability of these language models for predicting un-
seen activities. However, accurate alignment of the two embed-
ding spaces requires a substantial volume of paired signal-text data
with diverse activity samples, and the paired real-world dataset
is very limited. To address this, in our mmCLIP framework, we
create a large synthetic dataset for pre-training and collect a small
real-world dataset for fine-tuning our framework to bridge the
sim-to-real gap. For fine-tuning, rather than directly adjusting the
trained network parameters, we utilize the Low-rank Adaptation
(LoRA [19]) framework, which allows for efficientmodel tuning on a
very small parameter set. In addition, we design an activity attribute
decomposition and recomposition framework for both mmWave
signals and text labels to characterize the relations among activities,
facilitating the accurate classification of unseen activities. During
the inference of an unseen activity label, for which our frame-
work has never been trained on either the signal data or the exact
text label of the corresponding activity, our mmCLIP model gener-
ates signal embedding for the unseen activity, identifies the closest
matching text activity embedding from all candidate activities, and
assigns the related label to the unseen activity. Correspondingly,
the activities used in the fine-tuning process are regarded as seen
activities.

2.1 Pretraining of mmCLIP
The objective of this step is to create a large paired signal-text
human motion dataset to pre-train our proposed mmCLIP model,
thereby enabling accurate alignment of the signal embedding space
with the activity text space. This dataset is created by leveraging the
existing online large human mesh dataset (i.e., BABEL [42]) with
diverse human activities and corresponding language labels describ-
ing actions, and utilizing the signal simulator [58] to synthesize the
corresponding mmWave signals from this dynamic mesh dataset
by simulating the signal propagation and reflection on the mesh
surface. In this way, we successfully build the synthetic dataset by
pairing the simulated signals and the corresponding activity labels
from the descriptive text.

Regarding the design of our mmCLIP model, as illustrated in
Fig. 1, there are two branches (i.e., Text and Signal Branches). In
the text branch, the activity text label in the synthetic dataset is fed
into the Text Attributes Module. In this module, we first utilize the
ChatGPT-based Attribute Describer to provide detailed descriptions
of various attributes of the activity (e.g., a comprehensive descrip-
tion of the activity, how the subject’s arms or legs move during
the activities, whether the subject changes location, etc.) using in-
context learning [12]. Next, we feed the text attribute descriptions
from ChatGPT into the CLIP-based Attribute Embedding Gener-
ator (i.e., a weight-frozen CLIP text encoder) to generate the text
attribute embeddings for this text label. Subsequently, all the text
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Figure 1: System Overview of mmCLIP Framework

attribute embeddings are fed into the Text Attributes Aggregation
Module to obtain the aggregated text embedding that represents
this text label before the contrastive learning step. In the signal
branch of the model, the generated IF signals are fed into the Signal
Attributes Module, which first generates three different heatmaps
corresponding to the angle, Doppler, and range states of the activity.
We then developed a hierarchical Transformer-based Attribute Em-
bedding Generator to create attribute embeddings that correspond
to the text attribute embeddings in the text branch. Similarly, all the
signal embeddings are fed into the Signal Attributes Aggregation
Module to obtain the aggregated signal embedding. Finally, we
perform contrastive learning on the paired signal-text attribute em-
beddings and their corresponding aggregated embeddings within
the Contrastive Learning Module. Specifically, this module focuses
on pulling the signal embeddings toward the text embeddings that
belong to the same activity, while pulling the signal embeddings
against the text embeddings that belong to different activities in the
embedding space. After the learning process, the signal embeddings
are mapped to the text embeddings space, ensuring that signal and
text embeddings related to the same activity are clustered together.

2.2 Fine-tuning of mmCLIP
To bridge the sim-to-real gap, we collect a small real-world dataset
to fine-tune the mmCLIP model. Specifically, we employ the Low-
rank Adaptation (LoRA), a model tuning framework, to fine-tune
the parameters in the Signal Attributes Module and the Signal/Text
Attributes Aggregation Module. This approach allows us to adjust
the network parameters efficiently using only a small fraction of
parameters, rather than retraining the entire model.

2.3 Label Inference of Unseen Activities
During the inference of unseen activities, we first feed the collected
activity IF signals into the trained Signal Attributes Module and
Signal Attributes Aggregation Module to generate the aggregated
signal embeddings. Next, we input the candidate text labels into the
Text Attributes Module and Text Attributes Aggregation Module
to generate aggregated text embeddings for all the candidate text
labels. To determine the class of the unseen pose, we find the closest
matching text embedding from all candidate activities and assign
the corresponding label to the unseen activity. By leveraging the
descriptive capabilities of the ChatGPT model and the generaliz-
ability of the pre-trained CLIP model, our framework can generate
embeddings for completely unseen labels, thus enabling unseen
class classification.

3 METHODOLOGY
In this section, we will provide a detailed introduction to our pro-
posed mmCLIP framework, which includes the model and training
scheme designs.

In our model design, we design an activity attribute decomposi-
tion and recomposition approach to generate both the signal and
text activity embeddings and employ the contrastive learning ap-
proach to align the signal with text embedding spaces. The rationale
behind attribute decomposition and subsequent recomposition is
to capture the subtle semantic relations among activities in the em-
bedding space which enables our model to gain explicit clues and
relations about the activities, thereby improving the recognition
results for unseen activities. From the text perspective, although the
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embeddings of all activity text labels in the CLIP embedding space
are closely grouped due to contrastive learning with images, each
activity is treated as an individual embedding. Consequently, the
relationships among the activity text embeddings are not properly
characterized. To address this, our model proposes to use in-context
learning and ChatGPT to automatically decompose the activity text
labels into activity attribute descriptions and further transform
them into attribute embeddings using the CLIP text encoder. In this
way, we can capture the semantic relations among activities, repre-
sented as the similarities of their attribute embeddings. From the
signal perspective, contrastive learning forces the Signal Attribute
Embedding Generator to produce signal attribute embeddings that
are close to the corresponding text attribute descriptions, which
compels the model to focus on patterns in the signals that are
related to the corresponding activity attributes.

In the rest of this section, we illustrate howwe decompose the ac-
tivity inputs, both text and signals, into attributes using the Text At-
tribute Module (Sec. 3.1) and the Signal Attribute Module (Sec. 3.2),
respectively. These attribute embeddings are then recomposed us-
ing the Text/Signal Attribute Aggregation Module (Sec. 3.3) into
embeddings to represent the entire activity. Lastly, the contrastive
learning is performed in the Contrastive Learning module (Sec. 3.4).
For the training scheme design, we first pre-train (Sec. 3.5) our
framework using the created synthesized dataset. Then, we col-
lect a small real-world dataset to fine-tune (Sec. 3.6) our model.
Lastly, we elaborate on how to conduct unseen activity recognition
(Sec. 3.7).

3.1 Text Attributes Module
This module is designed to conduct attribute decomposition on
activity text labels, thereby enabling the capture of subtle semantic
relationships among activities in the embedding space. The decom-
position process is accomplished in two steps. First, the activity text
labels are decomposed into activity text attribute descriptions. This
step is automated using the ChatGPT-based Attribute Describer,
which leverages in-context learning by providing ChatGPT with
template descriptions and task samples. Supported by the gener-
ative capabilities of ChatGPT, high-quality text attribute descrip-
tions for any activity can be automatically generated. Second, the
attribute descriptions are encoded into text attribute embeddings.
This is achieved using the CLIP-based Attribute Embedding Gener-
ator, which utilizes CLIP’s text encoder to transform text attribute
descriptions into embedding representations.

3.1.1 ChatGPT-based Attribute Describer. In this design, we em-
ploy ChatGPT, a large language model (LLM) trained on extensive
datasets of textual content, as our text attribute describer to facil-
itate the generation of high-quality motion descriptions for the
activity text labels. While it may be feasible to manually decompose
activity labels for tasks with a limited number of activities, as de-
scribed later in Section 3.5 , using a LLM like ChatGPT is essential
for handling massive sets of text labels from the mesh dataset. To
ensure the output aligns with our goal, we utilize in-context learn-
ing, an efficient method to enhance the performance of the LLM on
specialized tasks. In-context learning does not require parameter
fine-tuning; instead, it involves providing the model with task-
specific descriptions and examples that help tailor its responses. As

Figure 2: ChatGPT-based Attribute Describer

illustrated in Fig. 2, the LLM is provided with a context template,
which includes a detailed task description and a few user-crafted
examples (the user only needs to do this once for all the activities).
The task description specifies the expected outputs of the activity
text attributes, and the designed examples help ensure that the
LLM’s outputs align closely with our expectations. This ensures
the LLM’s output activity descriptions are accurate and relevant to
the specific activity labels.

Specifically, for an activity text label 𝑦𝑇
𝑖
, we can decompose it

into 𝑁 text attribute descriptions {𝑇𝑛}𝑁𝑛=1. In our design, the decom-
posed text attributes represent the different aspects of the activities
and should also be sensible in the context of mmWave signals. Here
are five attributes used in our paper. First, we include an augmented
general description of the activity to preserve the comprehensive
information encapsulated in the original activity label. Second, we
decompose the activity based on body part movements, focusing
on the torso, arm, and leg movements. These attributes are impor-
tant since all the activities, whether seen or unseen, may share
similar postures among certain body parts. By leveraging this de-
sign, the model can characterize the relationships among activities,
which enables the use of semantic activity information to facilitate
the recognition of unseen activities. Last, since the RF signal is
sensitive to the target locational changes, we also incorporate an
attribute description that explicitly details the locational changes
occurring during the activity. As illustrated in Fig. 2, we prompted
the ChatGPT to generate the text attribute descriptions of the activ-
ity “lunge”. By simply replacing the word marked in red with the
designated activity, the ChatGPT model can automatically produce
a satisfactory response that includes five sentences to describe the
designed five attributes (marked in blue) accurately.

3.1.2 CLIP-based Attribute Embedding Generator. Contrastive
Language-Image Pretraining (CLIP [43]) model is trained using
contrastive learning on the image and text modalities. Trained on
a large image and caption dataset, its text encoder can effectively
capture the nuances and context of language, which is used as
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the Attribute Embedding Generator to generate the attribute em-
beddings from the text descriptions. Specifically, after acquiring
language attribute description {𝑇𝑛}𝑁𝑛=1 from ChatGPT-based At-
tribute Descriptor, we employ the CLIP text encoder to generate
the attribute embedding {𝑡𝑛}𝑁

𝑛=1.

3.2 Signal Attributes Module
This module aims to generate signal attribute embeddings from the
IF signals. To achieve this, we first utilize the designed Heatmap-
based Activity Describer to generate the Time-Doppler (TD), Time-
Range (TR), and Time-Angle (TA) heatmaps for the activity signals
within a certain time window. Note that these heatmaps represent
different aspects of the activities from the signal perspective, which
is essential for recognizing complex activities, as ambiguous move-
ment observed from a single heatmap may be more distinguishable
when combining all of the attributes. For instance, solely using the
TD heatmap may not sufficiently differentiate between clockwise
and counter-clockwise walking. Adding the TA heatmaps helps re-
solve such ambiguities. Similarly, while the TR heatmap effectively
distinguishes between stationary and mobile activities, it is less
effective for detecting subtle micro-movements without changes
in location. Then, we proposed the Transformer-based Attributes
Embedding Generator to output the activity signal attribute embed-
dings to align with the text attribute embeddings in the previous
section from the obtained heatmaps.

3.2.1 Heatmap-based Activity Describer. Given the collected IF sig-
nal data, we first perform a range Fast Fourier Transform along the
axis of ADC samples and then remove static clutter by subtract-
ing the mean value from each range bin. This process results in a
radar data tensor of size R𝑁𝑃 ×𝑁𝐶×𝑁𝑅 , where 𝑁𝑃 is the number of
transceiver pairs, 𝑁𝐶 is the number of chirps, and 𝑁𝑅 is the number
of range bins. To generate the TD, TA, and TR heatmaps, we begin
by implementing a 𝐷-point sliding window with a step size of 𝑆
along the chirp axis. This operation produces a sequence of win-
dowed radar cubes, each of size R𝑁𝑃 ×𝐷×𝑁𝑅 . For the TR heatmap,
we aggregate the values across the chirp and antenna axes for each
windowed radar cube. This produces a sequence of vectors at dif-
ferent time points indicating the intensity of possible objects at
each range bin. These vectors are then concatenated by the tempo-
ral order to form the final TR heatmap. Similarly, to generate the
TA and TD heatmaps, we first perform an FFT along the antenna
or chirp axis of each windowed radar cube, respectively. For the
TA heatmap, we aggregate the values across the chirp and range
axes, while for the TD heatmap, aggregation is performed across
the range and antenna axes. Finally, we resize all the heatmaps
to a uniform shape R𝐻×𝑇 , producing a 3-channel heatmap matrix
𝑀 ∈ R𝐻×𝑇×3

3.2.2 Transformer-based Attribute Embedding Generator. In this
section, we develop a transformer-based signal attribute embedding
generator that hierarchically extracts features from the heatmaps
and transforms them into detailed attribute embeddings. The pro-
cess begins with three heatmap encoder branches, each dedicated
to extracting radar features from one heatmap. Following this, an
attribute token learner is employed to fuse and refine the attribute
features obtained from each branch. The output from the attribute

Figure 3: Transformer-based Attribute Embedding Generator
and Attributes Aggregation Module

token learner is the attribute embedding, which will then be aligned
with the text attribute embedding in the Contrastive Learning Mod-
ule.
Multi-branchHeatmapDescriptor Encoder.As all the heatmaps
have a time dimension, it is essential to efficiently model their tem-
poral structure to extract useful motion features. In our design,
we crop the heatmaps along the time dimension using sliding win-
dows and feed the obtained patches into the encoder. This approach
enforces the model to capture and analyze the changes along the
temporal dimension. Specifically, given the input heatmap matrix
𝑀 ∈ R𝐻×𝑇×3, we first use three separate transformer encoders to
extract heatmap features from each heatmap encoder. The encod-
ing procedure includes three stages: patch embedding, temporal
embedding, and self-attention. For the patch embedding, we apply
a sliding window with size 𝐻 × 𝑤 on the heatmap along the 𝑇
axis to create a series of element time patches 𝑋 ∈ R ⌊𝑇 /𝑊 ⌋×𝐻×𝑤 .
These patches will then be flattened and linearly projected into
embedding 𝑋 ∈ R ⌊𝑇 /𝑊 ⌋×𝐷 . Such a design crops the heatmap as
patches with sequential order, however, the temporal relationships
among consecutive patches are not explicitly encoded. Because the
self-attention operation is permutation invariant, the Transformer
architecture itself does not have any information on the position of
each patch. To this end, we add a pre-initialized learnable tempo-
ral embedding (i.e., positional encoding) 𝑃 ∈ R ⌊𝑇 /𝑊 ⌋×𝐷 to retain
the absolute position information. In this way, we can obtain the
position-encoded input element representation 𝑋 = 𝑋 + 𝑃 .

We then apply multi-head self-attention blocks to extract long-
term interactions of features received at different patches for every
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heatmap. Each self-attention head functions as an individual feature
extraction layer that focuses on different positions in the heatmaps.
Specifically, the temporal patches 𝑋 ∈ R ⌊𝑇 /𝑊 ⌋×𝐷 is linearly trans-
formed into the query𝑄 , key𝐾 , and value𝑉 matrix with dimension
R ⌊𝑇 /𝑊 ⌋×𝐷/𝐻 ,

𝑄 = 𝑋𝑊𝑇
𝑄 , 𝐾 = 𝑋𝑊𝑇

𝐾 ,𝑉 = 𝑋𝑊𝑇
𝑉 , (1)

where𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉 are the linear transformation matrix and 𝐻 is
the number of heads. The attention function maps the query with
the key-value pair and calculates the output with the weighted sum,
which can be written as:

𝑧𝑖 = 𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝑄,𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇√︁
𝑑𝑘

)𝑉 (2)

where 𝑑𝑘 is the scaling factor. The output attention matrix 𝑧 can be
obtained by concatenating 𝑧𝑖 from 𝐻 attention head, and the final
output for the encoder block can be written as 𝑧 = 𝑀𝐿𝑃 (𝐿𝑁 (𝑧)) +
𝑧, where 𝑀𝐿𝑃 (·) is a multi-layer perceptron and 𝐿𝑁 (·) is layer
normalization.
Attribute Token Learner Given the output 𝑧 ∈ R ⌊𝑇 /𝑊 ⌋×𝐷 from
the transformer encoders of each branch, we concatenate the fea-
ture input along the embedding dimension 𝑧 ∈ R ⌊𝑇 /𝑊 ⌋×3𝐷 . In
this way, the attribute-specific features can be fused within the
corresponding time window. In addition, we add 𝑁 learnable token
{ℎ𝑛}𝑁

𝑛=1 of shape R
3𝐷 as addition inputs to present the signal at-

tributes embedding. Then, we obtain a concatenated embedding
𝑧 = [ℎ1; · · · ;ℎ𝑁 ; 𝑧], which will be fed into a new transformer block
to generate the signal attribute embeddings.

3.3 Attributes Aggregation Modules
From Sec. 3.1 and Sec. 3.2, we have obtained the text attribute em-
beddings {𝑡𝑛}𝑁

𝑛=1 and signal attribute embeddings {ℎ𝑛}𝑁
𝑛=1 of the

activity. We employ the Signal/Text Attribute Aggregation Module
to aggregate these signal/text attribute embeddings.While the struc-
tures of these two modules are identical, each module is trained
with its own set of weights. As illustrated in Fig. 3 (b), we use a
lightweight self-attention network to recompose the attribute em-
beddings into an aggregated embedding. Additionally, the model
incorporates a learnable token (i.e., 𝑡𝑐𝑙𝑠 in the text branch and ℎ𝑐𝑙𝑠
in the signal branch) as an additional input embedding to represent
the aggregated text/signal information for the activity. During the
inference, these embeddings are utilized to calculate the similarity
scores between the mmWave signal and candidate text labels.

3.4 Contrastive Learning Module
In this section, our goal is to train the entire framework that can
generate meaningful signal attribute embeddings and properly com-
bine the text and signal attribute embeddings. This is accomplished
using contrastive learning which pulls positive pairs (e.g., signal
and text embeddings belonging to the same activity) closer while
pushs negative pairs (e.g., signal and text embeddings from different
activities) further apart. Formally, for a batch of heatmaps, we first
optimize the cosine similarity 𝑠𝑖𝑚(·) between text attribute em-
bedding 𝑡𝑛 and heatmap attribute embedding ℎ𝑛 via cross-entropy

loss

L𝑎𝑡𝑡𝑟 = −1
𝐼

∑︁
𝑛

∑︁
𝑖

(𝑙𝑜𝑔
𝑒𝑥𝑝 (𝑠𝑖𝑚(ℎ𝑛

𝑖
, 𝑡𝑛
𝑖
)/𝜏)∑

𝑗 𝑒𝑥𝑝 (𝑠𝑖𝑚(ℎ𝑛
𝑖
, 𝑡𝑛
𝑗
)/𝜏) +

𝑙𝑜𝑔
𝑒𝑥𝑝 (𝑠𝑖𝑚(ℎ𝑛

𝑖
, 𝑡𝑛
𝑖
)/𝜏)∑

𝑗 𝑒𝑥𝑝 (𝑠𝑖𝑚(ℎ𝑛
𝑗
, 𝑡𝑛
𝑖
)/𝜏) )

(3)

where 𝑖, 𝑗 is themini-batch index and 𝜏 is the temperature parameter.
We then compute the text class embedding 𝑡𝑐𝑙𝑠

𝑖
and heatmap class

embedding ℎ𝑐𝑙𝑠
𝑖

and optimize the class loss through cross-entropy:

L𝑐𝑙𝑠 = −1
𝐼

∑︁
𝑖

(𝑙𝑜𝑔
𝑒𝑥𝑝 (𝑠𝑖𝑚(ℎ𝑐𝑙𝑠

𝑖
, 𝑡𝑐𝑙𝑠
𝑖

)/𝜏)∑
𝑗 𝑒𝑥𝑝 (𝑠𝑖𝑚(ℎ𝑐𝑙𝑠

𝑖
, 𝑡𝑐𝑙𝑠
𝑗

)/𝜏)
+

𝑙𝑜𝑔
𝑒𝑥𝑝 (𝑠𝑖𝑚(ℎ𝑐𝑙𝑠

𝑖
, 𝑡𝑐𝑙𝑠
𝑖

)/𝜏)∑
𝑗 𝑒𝑥𝑝 (𝑠𝑖𝑚(ℎ𝑐𝑙𝑠

𝑗
, 𝑡𝑐𝑙𝑠
𝑖

)/𝜏)
)

(4)

The final loss is calculated by combining the attribute and class loss
as follows:

LF = 𝜆𝛼L𝑎𝑡𝑡𝑟 + 𝜆𝛽L𝑐𝑙𝑠 (5)

where 𝜆𝛼 and 𝜆𝛽 are the hyper-parameters.

3.5 Model Pretraining using Large Synthetic
Dataset

In this paper, our objective is to achieve zero-shot human activity
recognition on the mmWave-based sensing system. To accomplish
this, we propose to take advantage of the generalizability of the
Visual Language Models (VLM). A critical component of this ap-
proach is the development of a large signal-text human activity
dataset with diverse human activities, which will enable accurate
alignment between the signal and text embedding spaces. However,
collecting mmWave sensing data is uniquely challenging due to
the need for specialized hardware and software, significant partici-
pant involvement, and meticulous environment preparation. These
requirements make large-scale data collection both costly and lo-
gistically complex. To address this problem, we propose to leverage
the abundant human mesh data in computer vision to generate a
large synthesized dataset and pre-train our framework using the
synthesized dataset. In computer vision, we can directly obtain
the 3D mesh data of human motion from the abundant 3D human
mesh datasets [33] or apply mesh estimation algorithms [15] on the
large activity motion video datasets [26]. Existing work [58] has
demonstrated that the IF signals can be directly simulated from the
3D human mesh which demonstrated effectiveness on challenging
pose estimation tasks. In this way, we can obtain a large synthetic
dataset with paired text labels and mmWave signals.
IF Signal Simulation In computer graphics, the human mesh is a
three-dimensional model that represents the human body with a
collection of triangle faces that define the shape of the body in the
virtual space. For a human pose consisting of a set of triangular faces
at time {𝐹 𝑡

𝑖
}𝐼
𝑖=1, the first step is to identify the visible triangular

faces from the perspective of the transceiver at locations 𝐿𝑇 and
𝐿𝑅 in R3 using the Hidden Point Removal (HPR) algorithm [25]. To
simulate the IF signal, it is necessary to determine the phase and
strength of the reflected signal at each time 𝑡 for each triangular
face 𝐹 𝑡𝑚 ∈ R3. We denote the center locations, surface norms, and
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areas of all visible triangular faces at time 𝑡 as {𝐹 𝑡𝑚}𝑀
𝑚=1, {𝑁

𝑡
𝑚}𝑀

𝑚=1,
and {𝐴𝑡𝑚}𝑀

𝑚=1, respectively.
The phase of the mixed IF signal for each triangular face at time

𝑡 is calculated as 𝑝 (𝑡) = exp
(
𝑗2𝜋

(
𝑓0𝜏𝑡𝑚 + 𝑆𝑡𝜏𝑡𝑚

) )
, where 𝑓0 is the

starting frequency of the chirp signal, 𝑆 is the frequency slope,
𝜏𝑡𝑚 = ( | |𝐿𝑇 − 𝐹 𝑡𝑚 | | + | |𝐹 𝑡𝑚 − 𝐿𝑅 | |)/𝑐 is the time-of-flight of the chirp
signal received after reflected from the triangular faces, 𝑐 is the
speed of light, and | | · | | is the Euclidean distance. To calculate
signal strength, factors such as the angle of the mesh triangles
to the transceivers, the distance from the mesh triangles to the
transceivers, and the size of the mesh triangles are considered.
We use the quasi-specular reflector model [28], which calculates
the reflection ratio of a triangular face 𝐹 𝑡𝑚 by 𝐶𝑡𝑚 = exp

(
− 𝜃 2

𝑡

2𝜎2

)
,

where 𝜎 is an empirical parameter and 𝜃𝑡 is the angle between
the strongest reflection direction and the received signal direction,
calculated using the face norm 𝑁 𝑡𝑚 .

The simulated IF signal at time 𝑡 is obtained by summing up the
IF signals from each of the visible triangular faces:

𝑠 (𝑡) =
𝑀∑︁
𝑚=1

𝐴𝑡𝑚𝐶
𝑡
𝑚𝑝 (𝑡)

| |𝐿𝑇 − 𝐹 𝑡𝑚 | | · | |𝐹 𝑡𝑚 − 𝐿𝑅 | |
(6)

For each transceiver pair, we apply the same process and sum up
the IF signals. Finally, we introduce Gaussian white noise to the
aggregated IF signal to simulate the thermal noise in real-world
electrical circuits.

3.6 Real-world Data Fine-tuning
We incorporate an additional local fine-tuning step to bridge the
sim-to-real gap using a small amount of real-world data. For the fine-
tuning process, we employ Low-rank decomposition (LoRA) [19],
a method that trains only a small fraction of parameters instead of
training the entire model parameters. Specifically, for a pretrained
weightmatrix𝑊 ∈ R𝑚×𝑛 , LoRA constrains the updateΔ𝑊 through
a low-rank decomposition𝑊 + Δ𝑊 =𝑊 + 𝐵𝐴, where 𝐵 ∈ R𝑚×𝑟 ,
𝐴 ∈ R𝑟×𝑛 , and the rank 𝑟 ≪ min(𝑚,𝑛). During training,𝑊 is
frozen and does not receive gradient updates, while𝐴 and 𝐵 contain
trainable parameters.
Fine-tuning Loss Function. Since the number of training samples
in each batch may exceed the number of distinct activity labels in
the training data for fine-tuning, multiple training samples corre-
sponding to the same activity label can appear in a training batch.
As a result, there can be more than one positive pair in a batch.
Therefore, treating the similarity score learning as a simple 1-in-N
classification problem with cross-entropy loss is inappropriate [54].
Instead, we employ the Kullback–Leibler (KL) divergence as the
signal-text contrastive loss to optimize our framework, enhancing
the model’s ability to distinguish between the positive and nega-
tive pairs effectively. Specifically, let 𝑝 (ℎ, 𝑡) and 𝑞(ℎ, 𝑡) represent
the ground truth and estimated similarity matrices for each batch,
respectively. Correspondingly, we derive the symmetric matrices
𝑝 (𝑡, ℎ) and 𝑞(𝑡, ℎ). The loss function can be re-written as:

L𝑐𝑙𝑠 =
1
2E(ℎ,𝑡 ) ∈𝐷 (𝐾𝐿(𝑝 (ℎ, 𝑡), 𝑞(ℎ, 𝑡)) + 𝐾𝐿(𝑝 (𝑡, ℎ), 𝑞(𝑡, ℎ))) (7)

where 𝐷 is the entire dataset.

3.7 Zero-shot Inference
For all the unseen activity text labels, we can apply the Text At-
tributes Module and the Text Attribute Aggregation Module to
generate the aggregated text embedding 𝑡𝑐𝑙𝑠 . Similarly, we can
encode the radar signal using our Signal Attribute Module and
the Signal Attribute Aggregation Module to generate the aggre-
gated signal embedding ℎ𝑐𝑙𝑠 ∈ R𝐷 . The recognition task is then
reformulated to

𝑦 = arg max
𝑦𝑖 ∈𝑌

𝑒𝑥𝑝 (𝑠𝑖𝑚(ℎ𝑐𝑙𝑠 , 𝑡𝑐𝑙𝑠
𝑖

)/𝜏)∑𝐶
𝑖=1 𝑒𝑥𝑝 (𝑠𝑖𝑚(ℎ𝑐𝑙𝑠 , 𝑡𝑐𝑙𝑠

𝑖
)/𝜏)

(8)

By modeling the recognition process as calculating the similarity
between radar signal embedding and text embeddings, the model
can recognize new activities.

4 SYSTEM IMPLEMENTATION
4.1 Testbeds
As illustrated in Fig. 4 (a), (b), we employ the TI AWR1843 BOOST
mmWave radar [52], coupled with the TI DCA1000 evaluation mod-
ule, to collect and stream mmWave data. The radar system com-
prises three transmitting and four receiving antennas, which emit
and receive Frequency Modulated Continuous Wave (FMCW) sig-
nals. Each FMCW chirp spans a bandwidth of 3.9 GHz, increasing
linearly from 77 GHz to 80.9 GHz. The radar is configured to trans-
mit 10 frames per second, synchronizing with the frame rate of
online mesh data. Each frame consists of 128 chirps, with each chirp
containing 256 sampling points. Given these device settings, our
mmWave setup can achieve a sensing range of up to 11 meters,
a range resolution of 4.3 cm, a sensing velocity of 4.5 m/s, and
a velocity resolution of 7.1 cm/s. In our experimental setup, the
mmWave testbed is placed on a table at a height of around 1 meter,
with the distance between the radar and the subject varying from
1 to 6 meters. Additionally, four Zed 2i stereo cameras [49] are
deployed and fused to capture high-quality skeletal data for each
activity simultaneously. These skeletal structures are then utilized
to generate the SMPL parameters using SMPLify [3].

4.2 Synthetic Data Preparation
We utilize the AMASS [33] human motion capture dataset, com-
plemented by paired textual labels from the BABEL [42] and Hu-
manML3D [18] datasets, as our source for synthetic data. AMASS
is an extensive motion capture corpus featuring over 50 hours of
continuous motion sequences, which encompass more than 200
daily activity classes performed by 500 subjects. The Babel dataset
provides frame-level short and general textual descriptions for these
motion sequences. For our purposes, we first generate a textual
label for each sequence by listing all actions within a specific ac-
tion window, then concatenating them into a single string. This
concatenated string is then fed into the text attribute module for at-
tribute generation. The HumanML3D dataset provides an additional
source of textual labels for the AMASS dataset, offering four general
textual descriptions written by different human labelers for each
continuous motion sequence. Given that our activity observation
window lasts only 3 seconds, we selectively use motion sequences
that are shorter than 5 seconds to ensure that the textual labels
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are accurately aligned with the motion sequences. Similarly, the
original textual label from HumanML3D will be parsed by our text
attribute module for attribute generation. Note that although the
textual labels from BABEL and HumanML3D provide descriptions,
they are generally broad and pertain to specific motions. These de-
scriptions lack the detailed granularity necessary for limb motions,
thus posing a challenge for the model to accurately capture subtle
activity relationships without the motion decomposition module.

The radar is positioned three meters in front of the subject and
mounted at a height of 1 meter above the ground at the start of
each motion sequence. The designated activity area for the subject
is confined to a 5m by 6m space, accommodating a wide range of
daily activities. We employ the same chirp configuration in our
signal simulation as we use for collecting real local mmWave data,
ensuring consistency between synthetic and real-world datasets.
By combining all of the motion sequences and labels from these
datasets, we obtained a diverse synthetic RF dataset comprising 30
hours of high-quality paired synthetic text-radar samples.

4.3 Model Training Detail
We employ the CLIP-ViTB-32 as the pretrained model for our CLIP-
based text embedding generation module. For textual attribute gen-
eration, we set the number of attributes as 5 and utilize GPT4-turbo
for label generation. For the multi-attribute heatmap generator,
we utilize a window of 256 chirps with a 16-chirp interval. In our
transformer-based attribute embedding generator, we employ a
2-layer transformer block for initial extraction in each branch, fol-
lowed by a 6-layer transformer block with 8 attention heads in the
property learner module. In the attribute aggregation module, we
utilize a lightweight single-layer transformer block. We optimize
our models using the Adam optimizer with a learning rate of 0.0001
and apply exponential weight decay at a rate of 0.9 after each epoch.
As stated in Equation 5, the hyperparameters 𝜆𝛼 and 𝜆𝛽 are set to
1. All deep learning models are implemented using PyTorch [40]
and trained on NVIDIA A100 GPUs.

5 EXPERIMENTS
5.1 Experiment Setup
5.1.1 Local Data collection. In our experiment, we design and col-
lect radar data including a total of 60 activities across three different
environments1 that cover common activities in real-world scenar-
ios to evaluate our system, as illustrated in Fig. 4 (a), (c), (d). These
activities can be divided mainly into three categories: fitness ac-
tivities (e.g., squats, jumping jacks, lunges, etc.), daily activities
(e.g., drinking water, walking in a circle, sitting, etc.), and gesture
controls (e.g., drawing a circle, swiping left, etc.), ensuring diversity
in the activities. We recruited 8 subjects with heights ranging from
165 cm to 185 cm to perform these activities repeatedly for duration
between 30 and 60 seconds in front of the mmWave radar. This
contributes a dataset with approximately 6 hours of real-world sens-
ing data. During these sessions, we simultaneously collected the IF
signal data from the mmWave radar and corresponding pose data
from four stereo cameras. It is important to note that the pose data
generated from the stereo cameras is not used in the synthetic data

1All the data collection was approved by the IRB of the authors’ institution.

Figure 4: Experiment Setup

pretraining and is only utilized in Sec. 5.5 to evaluate the quality of
our simulator. Most activity cycles are less than 3 seconds, aligning
with our radar signal observation window, except for mobile activi-
ties such as walking in a circle, and walking forward and backward
which take more time to finish an activity cycle. In the default
setting, we use three non-overlapping 10 classes as the unseen class
groups. For each group, we use the rest of 50 classes as the seen
activities. We repeat the experiment 3 times for each group and then
calculate the final result by averaging the result from each group. In
the scenario with fewer than 50 seen classes, we maintain the same
group of unseen activities. To adjust the number of seen activities,
we randomly remove excess activities from the seen activity group.
This procedure is repeated three times to ensure variability and
robustness in our results.

5.1.2 Models for Evaluation. In our experiments, we mainly evalu-
ate the text attribute module, synthetic dataset pertaining module,
and real data fine-tuning module with the model setting as follows:
Tent: Tent [64] is a pioneering work designed for zero-shot hu-
man activity recognition by aligning multiple sensing modalities,
including mmWave, LiDAR, and video, with CLIP’s text embedding
space. The model proposed in Tent receives mmWave radar point
cloud as input and utilizes a limited set of real-world mmWave
point cloud data from seen activities for model training. It further
adopts a learnable soft prompt [63] to enhance the understanding
of textual information. For a fair comparison, we modified Tent’s
input modality to heatmap and adjusted the corresponding network
structure accordingly.
Real: This baseline model configuration is the minimum imple-
mentation of our model, which utilizes only a set of real-world data
from seen activities for model training, without integrating the text
attributes module and synthetic dataset, sharing the same design
principle as Tent [64].
Syn: In this basic model setting, only the large synthetic dataset is
used for model pretraining, without incorporating real data fine-
tuning or the text attributes module.
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Figure 5: Overall Zero-shot Performance
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Figure 6: Effect of Seen Activities
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Figure 7: Effect of Unseen Activities

Real+Attr: This model employs real data from the seen activi-
ties along with the text attributes decomposition module without
utilizing the synthetic dataset for pretraining.
Syn+Attr: This baseline model is enhanced with the synthetic
dataset pertaining and our proposed text attribute decomposition
module, but it does not include fine-tuning with real data from seen
activities.
Syn+Real: This model combines synthetic dataset pretraining with
real data fine-tuning but does not incorporate the text attribute
decomposition module.
mmCLIP: This is the full implementation of our proposed model,
incorporating synthetic data pretraining, real data fine-tuning, and
the text attribute decomposition module.

5.2 Overall Zero-shot Performance
In this section, we evaluate the overall zero-shot performance of
the mmCLIP model and compare it with multiple baseline methods
introduced in Sec. 5.1.2. As demonstrated in Fig. 5, our proposed
mmCLIP model achieves superior performance in classification
accuracy compared to all of the baseline methods, with a notable
76.4% average classification accuracy on three non-overlapping 10-
class unseen activity groups. Note that in our zero-shot setting, the
model can not access the data from unseen activities during train-
ing, which brings a significant challenge to the classification task.
We can see that the performance of the Real baseline closely mirrors
that of Tent; however, both fail to produce satisfactory results due to
the absence of synthetic data pre-training and the attribute decom-
position module. It can also be seen that the performance of models
Real+Attr, Syn+Attr, and mmCLIP decreases significantly when
the attribute decomposition module is removed. This underscores
the effectiveness of our proposed attribute decomposition module,
which characterizes subtle relations among activities to facilitate
zero-shot inference. Additionally, we can see the performance of
Syn+Real exceeds that of Syn by a large margin, which is trained
only on the synthetic dataset. The unsatisfactory performance from
model Syn is due to the existence of a simulation-to-reality gap
between the synthetic dataset and real-world radar signals, demon-
strating the effectiveness of our fine-tuning approach in mitigating
this gap, thereby enhancing zero-shot activity recognition perfor-
mance.

5.3 Study of Zero-shot Settings
5.3.1 Effect of Number of Seen Activities. In this section, we inves-
tigate the impact of the number of seen activities on zero-shot per-
formance. As illustrated in Fig. 6, an increase in the number of seen
activities from 0 to 50 classes significantly enhances the model’s
performance, with optimal results observed at 50 classes. We can
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Figure 8: Effect of Attribute Decomposition

see mmCLIP consistently outperforms other baselines (without text
attribute module or synthetic data pertaining) across varying class
sizes, demonstrating the effectiveness of our proposed attribute
decomposition module and synthetic data pretraining. It is note-
worthy that mmCLIP with 0 seen activity (without fine-tuning)
achieves comparable results to the model Real+Attr with 30 seen
classes. This outcome highlights the advantage of synthetic data
pretraining, which leverages large-scale synthetic datasets to re-
duce data collection efforts while maintaining decent performance.

5.3.2 Effect of Number of Unseen Activities. We also explore the
impact of the number of unseen activities on mmCLIP’s scalability
in real-world deployments. In Fig. 7, we show the model’s perfor-
mance as the number of unseen classes increases from 4 to 16 with
an interval of 3. Initially, all models exhibit decent performance
for simpler classification tasks (e.g., 4 classes). However, as the
classification task becomes more challenging (e.g., 16 classes), the
performance of baseline models significantly decreases. In con-
trast, mmCLIP maintains robust performance despite the increase
in classification complexity (e.g. above 68% in 16-classes classifi-
cation). This demonstrates our proposed attribute decomposition
module and synthetic data pretraining strategy can transfer effec-
tive knowledge from pervasive text and visual data and characterize
the nuanced relationship between activities.

5.3.3 Effect of Attribute Module. In this section, we evaluate the
impact of our text and heatmap attribute modules on model perfor-
mance, as illustrated in Fig. 8. For the text attributes module, we
assess the performance impact by varying the number of attributes
from 1 to 5. In Fig. 8a, the results show that the model performance
improves consistently with the increase in the number of attributes.
This result supports that more attributes allow for a more distinc-
tive characterization of activities, enabling our model to use these
attributes as effective cues to infer unseen activities.

For the heatmap attribute decomposition module, we choose
three baseline models by retaining only one attribute. As shown
in Fig. 8b, the performance of TD heatmap is better than TR and
TA. This is possibly because the Doppler attribute is more sen-
sitive to subtle body part movement compared to the range and
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Figure 10: Effect of Loss Function

angle attributes, thus enabling more distinguishable motion fea-
tures for classification. However, none of these baseline approaches
surpassed mmCLIP, which underscores that integrating multiple
attributes allows our heatmap encoder to learn detailed activity
features that align with text attributes to infer unseen activities
more effectively.

5.3.4 Effect of Fine-tuning Methods. In this section, we assess the
accuracy and fine-tuning overhead of LoRA in our model by com-
paring it with different baseline fine-tuning methods. In addition to
LoRA, we explore two additional fine-tuning baselines: (a) mixing
data from the synthetic dataset with data from the real-world activ-
ity dataset and training the model from scratch, and (b) full-model
fine-tuning with the pretrained model from the synthetic dataset.
As shown in Fig. 9, we observe that fine-tuning approach (a) is not
effective in both classification accuracy and training overhead. The
reason behind this is that this approach needs to train the full model
and the training process is dominated by the overwhelming vol-
ume of synthetic dataset, thus leading to unsatisfied performance.
Approach (b) also shows suboptimal results due to the requirement
of adjusting all model parameters, which often leads to the issue
of catastrophic forgetting. Our model, on the other hand, archives
the best classification accuracy with only utilizing 0.25% training
parameter compared to the baseline methods, demonstrating the
effectiveness of our fine-tuning method.

5.3.5 Effect of Loss Function. In this section, we evaluate the im-
pact of different loss functions on model performance. We examine
two commonly used loss functions as our baseline: (a) cosine simi-
larity loss, and (b) mean-square error (MSE) loss. For these baseline
loss functions, we compute the loss only for each positive sample
(paired heatmap data sample and text sample) without explicitly
distinguishing the negative samples (unpaired heatmap data sam-
ple and text sample). The results, as shown in Fig. 10, indicate that
neither baseline loss function can show satisfied performance in
the zero-shot classification task. The reason is that the baseline
loss functions focus solely on making the embeddings of the same
class similar, while the contrastive losses not only account for the
intra-class alignment of embeddings but also consider the inter-
connection between different classes. This result demonstrates that
our contrastive loss function is more effective in creating a robust
semantic space for each activity, as it enhances both intra-class
alignment and inter-class differentiation.

5.3.6 Cross-Environment Zero-shot Performance. We now evaluate
the generalization ability of our system to different environments.
We use Scene A (a conference room) as our basic environment, and
use Scene B (another conference room), and Scene C (a resting area)
as the test environment. Specifically, we pre-train the model with
the synthetic dataset, which is environment-independent, then we
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Figure 11: Few-shot Performance

fine-tune the model with the real seen activity data from the base
environment and test it in the other environments with the same
set of subjects. During the experiment, the subjects are asked to
perform the same activities as they did in the base environment.
The classification results for Scene A (base environment), Scene B
(test environment), and Scene C (test environment) are 76.4%, 72.4%,
and 75.3%, respectively. We can see only a marginal performance
drop when transitioning from the base to the test environments.
This robustness can be attributed to our synthetic data pre-training
strategy, which enables the model to learn motion-specific features
independent of the environment, thus enhancing its ability to gen-
eralize across different scenarios.

5.4 Few-shot Performance
While zero-shot recognition is highly promising for training gener-
alizable models capable of handling unseen classes, a few labeled
samples from unseen activities may be available in practical sce-
narios to boost the model’s performance. This motivates us to also
evaluate our framework in the few-shot setting. A typical few-shot
learning scheme [14, 27, 39] works by first pretraining a model on
a set of base classes with sufficient labeled data to learn general fea-
tures and representations. After this pretraining phase, the model
is fine-tuned to quickly adapt and recognize new classes using only
a small number of labeled examples from those classes, leveraging
techniques like meta-learning or transfer learning to efficiently gen-
eralize to new tasks with limited data. These approaches struggle to
work in zero-shot scenarios, which distinguishes our method from
the approaches tailored exclusively for few-shot learning. In our
approach, the synthetic data pre-training and real data fine-tuning
of seen activities enable our model to capture effective feature rep-
resentations from various activities. This foundation allows our
framework to be easily extended to few-shot learning scenarios.

We employ a basic metric-based few-shot method that requires
no additional training. Specifically, using a few representative
heatmap examples from each unseen class, we can calculate the cor-
responding heatmap class embeddings. During the inference stage,
we compute the heatmap class embedding from incoming heatmap
samples and assess the similarity with the few-shot heatmap class
embedding. The class label is then determined by selecting the class
with the highest similarity. To compare with the existing few-shot
framework, we have adapted RF-Net [11] as the few-shot baseline.
Specifically, we adapted the selection of meta-tasks chosen from
different environments for the same activity, to now be selected
from among the base classes, followed by fine-tuning for the target
classes.
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Figure 12: Synthetic Heatmap Visualization

As illustrated in Fig. 11, there is a clear increasing trend in classi-
fication accuracy for all models as the number of few-shot examples
increases from zero-shot to 7-shot settings. With just a one-shot
sample provided from each unseen class, our model achieves sig-
nificantly higher accuracy compared to the zero-shot setting. This
improvement is mainly because the model in the zero-shot setting
relies solely on the semantic connection between activities to infer
unseen classes while the model in the few-shot setting can leverage
the representative samples from unseen activities as an observation
to approximate the real distribution of unseen classes to enhance
prediction. We also observe that our approach consistently out-
performs the RF-Net baseline, this is because RF-Net is tailored
primarily for adapting the same activity across different environ-
ments, thus it may not be able to efficiently handle the few-shot
learning scenarios studied in this paper, whose goal is to recognize
new activities with only a few labeled samples. Additionally, our
framework leverages the powerful representation capabilities of
the large pre-trained model, thereby helping to construct a robust
feature space even with a limited dataset. It is also noteworthy
that the model Syn, which is pre-trained on the synthetic dataset,
achieves decent performance in the one-shot setting. This high-
lights the effectiveness of the synthetic data pre-training strategy
that helps the model capture useful activity motion features with
diverse activity motion data from other modalities at minimum
data collection effort.

5.5 Quality of The Signal Simulator
In this section, we evaluate the quality of our signal simulator, which
shares the same design principle as [6, 61]. Specifically, we first uti-
lize the collected activity pose data to simulate radar signals for all
60 activities. We then train the model in the same manner as we pre-
train mmCLIP using the large synthetic dataset and subsequently

test it on various unseen classification tasks using real-world radar
signals. In this setting, our model achieves an impressive accuracy
of 89.7%, demonstrating the simulator’s capability to capture es-
sential motion features beneficial for our zero-shot classification
task, although it may not perfectly replicate the physical world. In
Fig. 12, we show an example heatmap attribute from the activity
bowing, jogging clockwise, and mopping the floor. The odd rows
display the real heatmap signals captured during the activity, while
the even rows illustrate the synthetic heatmap signals generated by
our simulation module. The columns from left to right correspond
to time-Doppler, time-range, and time-angle heatmaps, respectively.
The visual similarity between the real and simulated signals under-
scores the effectiveness of our signal simulation module.

5.6 System Complexity and Latency
In this section, we analyze the computational complexity and the
latency of the proposed system. For the complexity of our proposed
mmCLIP framework, we report the number of trainable parameters
in the deep learning model. In the synthetic data pertaining stage,
the overall number of trainable parameters is 20𝑀 , where the text
branch has 4𝑀 parameters and the signal branch has 16M param-
eters. Compared with the original CLIP model with a total 150𝑀
parameters [62], we can see our model is substantially more com-
pact, enhancing its efficiency for the Human Activity Recognition
task. During the fine-tuning stage, the total number of trainable
parameters is reduced to 500𝐾 , with the text branch accounting for
30𝐾 parameters and the signal branch for 470𝐾 parameters. This
reduction highlights the efficiency of LoRA fine-tuning. For latency
measurements, we conducted inference on a desktop equipped with
an NVIDIA A6000 GPU and an Intel Xeon Gold 6254 CPU, reporting
the average latency. Given that the text embedding can be computed
in advance of the inference stage, the primary latency originates
from the signal branch, which has a processing time of approx-
imately 7𝑚𝑠 . This performance demonstrates that our proposed
system is capable of operating in real-time, making it suitable for
real-world applications.

6 RELATEDWORK
6.1 mmWave-based Human Activity

Recognition
The advancements in deep learning have spurred the development
of various mmWave-based sensing systems for human activity
recognition [5, 23, 29, 48, 59]. These systems employ various signal
processing techniques to manipulate signal attributes into formats
suitable for neural networks. However, a common limitation of
these approaches is their dependence on abundant training data to
achieve optimal performance. This requirement can pose challenges
in real-world applications where such extensive data collection may
not be feasible.

6.2 RF-based Zero-shot Human Activity
Recognition

Due to the substantial effort required to collect mmWave signal
datasets, recent research has explored few-shot and zero-shot activ-
ity recognition to improve the model’s generalizability with limited
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or no data. Studies such as [11, 16, 57] have proposed few-shot learn-
ing systems where the model is pretrained on a source dataset and
benefits from a few representative samples in unseen classes to en-
hance its generalizability. In the zero-shot setting, where real-world
signal data from unseen classes is not accessible, the classification
challenge significantly increases. To address this, researchers have
developed two primary approaches for zero-shot recognition using
RF signals: the signal simulation-based approach and the semantic
space projection-based approach. For the signal simulation-based
approach, works like [1, 9] proposed simulating the initial Doppler
heatmap from vision data of the unseen activity and refining it
through deep neural networks. [6, 61] developed more sophisti-
cated simulators capable of generating high-quality IF signals from
vision data. To achieve zero-shot recognition, these works require
the unseen activity label available in the training stage to synthe-
size radar signals using the physical simulator. These synthesized
signals are then used to train a classification model with fixed
output classes tailored to these predetermined classes to achieve
zero-shot recognition. Such a design inherently limits flexibility, as
the trained classification model would fail in scenarios where new
unseen activities are encountered. In contrast, this paper addresses
a more practical yet challenging problem, where both the signal
and the label of the unseen activities are not observed during model
training. To tackle this problem, our approach leverages language
reasoning, utilizing pre-trained text embeddings and their semantic
relationships to bridge the gap between seen and unseen classes.
This enables our model to train on a set of seen activities and
generalize to different unseen activity classification tasks, without
explicitly acquiring unseen activity labels in the training stage.

On the other hand, the semantic space projection-based approach
involves projecting the signal embedding space to the embedding
space of other modalities that have been trained on a larger dataset
to enhance zero-shot capabilities. For example, [21] utilized text
semantic space with word embedding to bridge unseen and seen
activities. Most recently, [64] proposed incorporating a text encoder
from an existing visual-language model, such as CLIP [43], to fa-
cilitate the zero-shot recognition task. Unlike these approaches,
our mmCLIP framework employs a pre-train & fine-tune training
scheme that utilizes cross-modal signal synthesis to augment di-
verse mmWave data for pre-training, coupled with small real-world
datasets for fine-tuning, to enhance the alignment of embedding
spaces between radar signals and textual labels. Additionally, we
designed an attribute decomposition and recomposition module for
both the signal and text modality. This helps the model to charac-
terize subtle activity relationships leveraging the element activity
attribute that may be shared between seen and unseen activities,
thereby substantially improving classification performance for un-
seen classes.

6.3 Visual Language Models
Foundational visual language models (VLMs), such as CLIP [43]
and ALIGN [22], have been extensively trained via contrastive pre-
training using large-scale image-text pairs, demonstrating remark-
able zero-shot transfer capabilities across a variety of downstream
vision tasks. These applications include few-shot and zero-shot
image recognition [60, 62, 63], object detection [17, 53, 56], image
captioning [7, 34], cross-modal retrieval [13, 32], and video-based

HAR [30, 36, 46]. However, adapting pre-trained visual language
models to radar-based HAR introduces significant challenges due
to the absence of temporal information in image-based training
data and the modality gap between image-text and signal-text pairs,
necessitating innovative approaches to bridge these gaps.

7 DISCUSSION AND FUTUREWORK
While mmCLIP represents a pioneering endeavor towards a more
generalizable Human Activity Recognition (HAR) system by lever-
aging knowledge from a pre-trained visual-languagemodel, it opens
up substantial avenues for future research:
Different Radar View and Subject Position: mmCLIP is pri-
marily evaluated under conditions where the subject maintains a
forward-facing orientation relative to the radar while engaging in
most of the activities. In practical settings, variations in the radar’s
view direction and the subject’s orientation can significantly alter
the reflection patterns. This variability poses substantial challenges
to the zero-shot recognition of unseen activities, underscoring the
need for further development to accommodate a range of orien-
tations and positions. A promising direction for future research
includes simulating signals by adjusting the radar view and subject
location to better mimic real-world scenarios.
Multi-Modal Sensing: A critical future direction for mmCLIP in-
volves enhancing its capabilities to support multi-modal sensing.
By delving into attribute decomposition, mmCLIP combines the
physical signals with textual attributes. This methodology facili-
tates integration with other sensing modalities that utilize different
physical properties, thereby enhancing environment perception for
a more robust analysis.
Adapting To Different Downstream Tasks: Broadening mm-
CLIP’s utility to encompass various downstream tasks such as
virtual reality interactions, elderly care, and gesture recognition
presents another promising avenue. This expansion could be fa-
cilitated by developing a larger vision-text dataset that captures
diverse human motions across different contexts, utilizing 3D mesh
generation tools [15] for synthetic dataset generation.

8 CONCLUSION
In this paper, we tackle the problem of mmWave-based zero-shot
human activity recognition. Specifically, we propose mmCLIP, a
novel mmWave sensing system that can recognize unseen activities
by transferring knowledge from the advanced pretrained visual
language model, which is pre-trained through pervasive text-image
pairs. To facilitate the knowledge transfer process, we generate
a comprehensive synthetic mmWave radar dataset by leveraging
existing cross-modal vision datasets. Additionally, we introduce
an attribute decomposition module that effectively characterizes
the nuanced relationships between activities. Such model design
enhances our system’s ability to understand and classify complex
activity patterns. The superior zero-shot classification results on
unseen activities demonstrate the effectiveness of our proposed
mmCLIP framework.
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