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ABSTRACT
Cross-lingual natural language understanding (NLU) aims to train
NLU models on a source language and apply the models to NLU
tasks in target languages, and is a fundamental task for many cross-
language applications. Most of the existing cross-lingual NLU mod-
els assume the existence of parallel corpora so that words and sen-
tences in source and target languages could be aligned. However,
the construction of such parallel corpora is expensive and some-
times infeasible. Motivated by this challenge, recent works propose
data augmentation or adversarial training methods to reduce the
reliance on external parallel corpora. In this paper, we propose an
orthogonal and novel perspective to tackle this challenging cross-
lingual NLU task (i.e., when parallel corpora are unavailable). We
propose to conduct multi-task learning across different tasks for mu-
tual performance improvement on both source and target languages.
The proposed multi-task learning framework is complementary to
existing studies and could be integrated with existing methods to
further improve their performance on challenging cross-lingual
NLU tasks.

Towards this end, we propose amulti-task adversarial framework
for cross-lingual NLU, namely Macular. The proposed Macular in-
cludes a multi-task module and a task-specific module to infer both
the common knowledge across tasks and unique task characteris-
tics. More specifically, in the multi-task module, we incorporate a
task adversarial loss into training to ensure the derivation of task-
shared knowledge only by the representations. In the task-specific
fine-tuning module, we extract task-specific knowledge which is
not captured by the multi-task module. A task-level consistency
loss is added to the training loss so that consistent predictions
across a target task and an auxiliary task (i.e., the task that is the
most similar to the target task) are achieved. A language adversar-
ial loss is also incorporated so that knowledge can be transferred
from source languages to target ones. To validate the effectiveness
of the proposed Macular, we conduct extensive experiments on
four public datasets including paraphrase identification, natural
language understanding, question answering matching, and query
advertisement matching. The experimental results show that the
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proposed Macular can outperform state-of-the-art cross-lingual
NLU approaches.
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1 INTRODUCTION
Natural language understanding (NLU), as an umbrella term, covers
a variety of sub-tasks dealing with machine reading comprehension,
including text classification, named entity recognition, and part-of-
speech tagging. In this paper, we focus on NLU tasks in the cross-
lingual setting, in whichmodels are trained on source languages and
then applied to target languages. Cross-lingual NLU is an important
task for many cross-language applications. With the globalization
trend, there is a great demand in the support of multiple languages
by products and services. For example, Apple Siri andAmazonAlexa
support 21 and 8 languages respectively, Google search engine
supports 149 languages, and Instagram supports 36 languages. In
these multi-language scenarios, there usually exist low-resource
languages for which insufficient labeled samples are available. For
a better understanding of those languages, it would be desirable to
leverage the knowledge obtained from high-resource languages in
a cross-lingual setting.

Cross-lingual NLU tasks are challenging. One major challenge is
that labeled samples are usually unavailable for the target language
(i.e., low-resource language). To tackle this challenge, methods have
been proposed to align words or sentences of different languages
in a low-dimensional embedding space [4, 15, 18, 32, 35] for knowl-
edge transfer across languages. In recent years, the pre-trained
multi-lingual large-scale language models, such as multilingual
BERT [11] and XLM-RoBERTa [10], are developed and they achieve
unattainable performance. Built on these multi-lingual language
models, recent efforts focus on the inference of language-invariant
representations [5, 7, 23, 24] and robust representations [14, 22].
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Figure 1: The framework of multi-task module (left) and task-specific fine-tuning module (right) of Macular.

Despite their outstanding performance, these existing approaches
suffer from one major limitation, that is, they highly rely on parallel
corpora, assuming that the translations of the same documents are
available for multiple languages. Such corpora are very expensive
to construct, especially for low-resource languages [22].

To overcome this limitation, augmentation methods have been
proposed to reduce the reliance on parallel corpora. The augmen-
tation is conducted according to the semantics of sentences or the
syntax of languages [2]. For example, one popular augmentation ap-
proach is code switch augmentation [34], in which some words are
randomly replaced in one sentence with its synonyms in other lan-
guages. In this paper, we propose a multi-task learning method that
is complementary to existing cross-lingual NLU methods. We ob-
serve that different NLU tasks share some common properties, and
thus multi-task learning enables the sharing of common knowledge
across tasks and languages, and significantly reduces the require-
ment on large-scale labeled data. By the proposed multi-learning
framework, the performance of NLU tasks on both source languages
and target languages could be boosted.

Inspired by the fact that both unique and common task character-
istics exist among different NLU tasks, the proposed framework is
designed to learn task-shared representations and task-specific rep-
resentations simultaneously. Then the intermediate representations
of documents are a combination of task-shared and task-specific
representations. By decoupling these two types of representations,
we are able to capture both across-task shared knowledge and
task-specific knowledge.

Based on this principle, we propose a multi-task adversarial
framework for cross-lingual natural Language understanding, namely
Macular, which includes a multi-task module and a task-specific
fine-tuning module. The multi-task module is trained to learn the
common representations via shared parameters of the language
model across tasks. In the task-specific module, another language

model is deployed to learn task-specific representations. Both rep-
resentations are aggregated to make predictions. Different from
existing works on cross-lingual NLU [5, 7, 23, 24], we do not require
that parallel corpora are available. Instead, we work on corpora
consisting of both high-resource and low-resource languages. Incor-
porating code switch augmentation [34] into the proposed multi-
task learning framework can further reduce the reliance on parallel
corpora. To capture the common characteristics across tasks and
languages, we propose two corresponding adversarial losses that
enable the multi-task representations to be invariant to tasks and
enable the final representations to be invariant to languages. To
further improve the performance, we propose a novel task-level
consistency loss. For a target task, we pick another task which is the
most similar, and then define consistency loss to enforce consistent
predictions between the source language data and the augmented
data of the chosen task. This consistency loss can help the model
understand sentence semantics better, and can be considered as an
alternative way of data augmentation that borrows information
from a similar task.

The contributions of the paper are summarized as follows:

• We propose a novel multi-task adversarial framework for cross-
lingual natural language understanding. To the best of our knowl-
edge, this is the first attempt to leverage multi-task learning in
the context of cross-lingual NLU tasks. We demonstrate that this
effective strategy serves as a complementary way of data aug-
mentation in cross-lingual NLU. With the proposed framework,
parallel corpora are not needed and labeling efforts are greatly
reduced.
• The proposed framework provides a new perspective of learning
better cross-lingual representations by decoupling task-shared
representations and task-specific representations. Novel models
are proposed to obtain reasonable task-shared and task-specific
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representations that capture the common and unique properties
across tasks and languages respectively.
• We propose to integrate various losses into the training loss
function to achieve the goal of cross-lingual NLU in a multi-task
learning setting. In particular, a novel task-level consistency loss
is proposed to help the model leverage information across tasks
and languages.
• We conduct extensive experiments on four benchmark datasets.
Results show that the proposedMacular outperforms baselines
significantly. Furthermore, we study how the relationship among
different NLU tasks affects the performance in ablation studies,
which reveal insights and guidelines for multi-task learning in
cross-lingual NLU.

2 RELATEDWORK
2.1 Cross-lingual NLU
Cross-lingual NLU tasks are widely explored from two major per-
spectives: 1) word embedding [4, 15, 16, 18, 31, 32, 35, 37, 39, 40, 44],
and 2) pre-trained multi-lingual language models, such as multi-
lingual BERT [11], mT5 [45], MBart [30] and XLM-RoBERTa [10].
The state-of-the-art methods usually are based on pre-trained multi-
lingual language models, i.e. fine-tuning language models on down-
stream task datasets. Recent works built upon multi-lingual lan-
guage models can be briefly categorized as adversarial training-
based and data augmentation-based models as discussed below.

Adversarial training-based cross-lingual models [1, 5–7, 19, 23,
24, 42, 47] are designed to learn language-agnostic representations.
However, this line of work usually relies on the existence of parallel
corpora or unlabelled target language data, which are expensive
to obtain and not always available. To overcome the limitations,
several recent adversarial training-based models [14, 22, 33] learn
robust representations by enforcing consistent output over a neigh-
borhood of data points from English which can be considered as
adversarial examples [17] of English data. To better align the source
language with target languages, some works explore data augmen-
tation methods [2, 3, 12, 14, 34, 46] for cross-lingual NLU tasks.
Various augmentation techniques were proposed. For example, the
code-switch method [34] proposes to randomly replace the phrase
in one sentence to other languages, and some other methods aug-
ment data via reordering [14], or based on syntax [2], or generate
augmented data from the vicinity distribution of the source and
target samples based on language models [3], or apply several exist-
ing data augmentation methods like code-switch [34] and machine
translation jointly. Different from the aforementioned approaches,
we propose a new perspective to tackle target cross-lingual NLU
tasks via a multi-task learning framework. The proposed multi-
task learning framework shows significant improvements on most
of the languages in cross-lingual NLU tasks. It is also compatible
with existing cross-lingual methods so that the performance can
be further improved by an integration.

2.2 Multi-task Learning in Natural Language
Understanding

Many multi-task learning models involve a shared feature extractor
and task-specific output branches, such as [8, 9, 28, 29]. Other multi-
task learning models [20, 36, 38] learn task sharing knowledge

and task uniqueness by a hierarchical architecture, in which the
lower layers focus on lower-level tasks like POS and higher layers
focus on higher-level tasks like textual entailment. One existing
work [26] proposes to introduce adversarial mechanism into multi-
task learning such that learnt knowledge consists of both common
patterns across tasks and unique task characteristics. However, this
design is not suitable for large-scale languagemodel since it needs to
maintain a task-shared model as well as a task-specific module per
task simultaneously during the training procedure, resulting in an
extremely high memory requirement for training as the number of
tasks increases. Different from this approach, the proposedMacular
first builds one sharing multi-task module and then fine-tunes
each task-specific module separately, reducing the training memory
requirement largely. Moreover, all the aforementioned multi-task
methods focus on NLU tasks in a monolingual setting, which is
different from the cross-lingual setting studied in this paper.

3 METHODOLOGY
3.1 Problem Formulation
Cross-lingual natural language understanding (NLU) includes 𝑘
tasks 𝑡1, 𝑡2, ..., 𝑡𝑘 . For any task 𝑡𝑖 , 𝑖 ∈ {1, . . . , 𝑘}, it only has the
training data in the English language D𝑖 = {(𝑥𝑖

𝑗
, 𝑦𝑖

𝑗
)}𝑛𝑖

𝑗=1, where
𝑥𝑖
𝑗
is the text content, 𝑦𝑖

𝑗
is the label of 𝑥𝑖

𝑗
, and 𝑛𝑖 is the number of

training instances in D𝑖 . The goal is to learn a model 𝑓𝑖 (𝑥𝑖𝑗 ) → 𝑦𝑖
𝑗

for each task 𝑡𝑖 .

3.2 Overview
The objective is to learn an effective cross-lingual model which can
be generalized from English to other target languages. Towards
this goal, we propose a newmulti-task adversarial framework for
cross-lingual natural language understanding (Macular) to train
a model consisting of two modules: (1) multi-task module, and
(2) task-specific fine-tuning module. As shown in Fig. 1,Macular
first learns task-shared representation via the multi-task module
and then goes through the task-specific fine-tuning module for fi-
nal predictions. The proposed framework does not require parallel
corpora in different languages. Instead, it augments the original
English-only dataset by code-switch augmentation, where the data
include the texts of the source language and the augmented texts
obtained by code-switch. Fig. 2 demonstrates code-switch augmen-
tation with three vivid examples.

In the rest of the section, we briefly elaborate Fig. 1 and discuss
how the training loss is defined for each module and how these two
modules cooperate together. More details can be found in Section 3.3
and Section 3.4.

(1) Multi-task Module (Section 3.3): Its training loss consists
of three parts, namely, task loss, augmentation loss, and task-
adversarial loss. The first two losses aim to discover common
knowledge across different tasks, and they are determined by
the English corpus and the augmented data, respectively. Be-
sides, we devise task-adversarial loss to learn task-invariant
representation, which filters task-related information in multi-
lingual BERT (mBERT) output.

(2) Task-specific Fine-tuning Module (Section 3.4): It com-
prises three components: a well-trained mBERT from the multi-
task module to attain multi-task representations, a trainable
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mBERT to learn task-specific representations, and an aggre-
gation layer to aggregate both representations via a weighted
sum. While training a task 𝑡𝑖 , 𝑖 ∈ {1, . . . , 𝑘}, we fine-tune this
module by minimizing the task loss, the augmentation loss,
the language-adversarial loss, and the consistency loss. Specif-
ically, the first two losses are computed with the English cor-
pora and the augmented data of task 𝑡𝑖 , respectively. Language-
adversarial loss can sort out the unique information presented
in the English corpus only and focus on the semantics of sen-
tences. The consistency loss ensures that the predictions on
task 𝑡𝑖 are consistent with that on other similar tasks.

Sofa Loveseat at Amazon. Low Prices on Sofa Loveseat. 

Free Shipping on Qualified Orders.

Sofa Loveseat at Amazon. faible prix on couch Loveseat. 

Free expédition on qualifiés Orders.

The first cosmonaut was the Soviet air force pilot Yuri 

Gagarin , also the first person in space .

The 第一 cosmonaut was the Soviet エア force pilot Yuri 

Gagarin , also the first person in space.

Product and geography are what make cream skimming 

work.

Product and geography are какво make cream skimming 

travailler.

Figure 2: The example of code-switch augmentation. The
blue font is en-de, orange font is en-fr, the purple font is
en-zh, yellow font is en-bg, and the green font is en-ja.

3.3 Multi-task Module
Inmulti-task learning, it is uniqueness and commonness that coexist
across different tasks. The multi-task module targets to capture
common knowledge as multi-task representations. Therefore, it is
essential to attain and purify the task-shared representation of a
given text without mixing the task-specific representations.

Learn Multi-task Representations. To reduce the reliance on par-
allel corpora, we augment the training data of all the tasks with
code-switch [34]. By this means, machine translation models are
no longer needed, and the method is effective for augmentation
in cross-lingual settings [34, 46]. In the multi-task setting, data
augmentation can enlarge the training datasets, which benefits
the model training because augmented data of different tasks can
be shared. Fig. 2 exemplifies how code-switch works, and in each
example, these two lines stand for the original and the augmented
texts, respectively. Given 𝑗-th sample of task 𝑖 (𝑖 ∈ {1, . . . , 𝑘} and
𝑗 ∈ {1, . . . , 𝑛𝑖 }), let augmentation operation denote by A

(
𝑥𝑖
𝑗

)
, and

the augmented dataset be D𝑎𝑢𝑔

𝑖
=

{(
A

(
𝑥𝑖
𝑗

)
, 𝑦𝑖

𝑗

)}𝑛𝑖
𝑗=1

.

The multi-task module takes the pre-trained language model
mBERT as the backbone. More detailedly, the module shares one
mBERT encoder among different tasks and applies different predic-
tion layers to different tasks. For a given training data point 𝑥𝑖

𝑗
, the

mBERT 𝑓𝑚 (·) encodes it to a 𝑑-dimensional vector:

𝒆𝑖𝑗 = 𝑓𝑚
(
𝑥𝑖𝑗

)
. (1)

The predictions made based on 𝒆𝑖
𝑗
are:

�̂�𝑖𝑗 = 𝜎
(
𝑾𝑖𝒆𝑖𝑗

)
= 𝐹𝑚

(
𝑥𝑖𝑗

)
, (2)

where we use 𝜎 to represent a sigmoid function while conducting
binary classification or represent a softmax function while conduct-
ing multi-class classification.𝑾𝑖 is the prediction layer parameter
for task 𝑡𝑖 . Correspondingly, the task loss L𝑡 and the augmentation
loss L𝑎 are formulated as

L𝑡 =
1∑𝑘

𝑖=1 𝑛𝑖

𝑘∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=1

𝐶𝐸 (𝐹𝑚 (𝑥𝑖𝑗 ), 𝑦
𝑖
𝑗 ), (3)

L𝑎 =
1∑𝑘

𝑖=1 𝑛𝑖

𝑘∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=1

𝐶𝐸 (𝐹𝑚 (A(𝑥𝑖𝑗 ), 𝑦
𝑖
𝑗 ), (4)

where 𝐶𝐸 (·, ·) represents cross-entropy loss function.

Purify Multi-task Representations. It is not a radical way that the
module is trained by minimizing Eqn. 3 and 4 only because the
unique knowledge of a task may mix up into task-shared repre-
sentations. To ensure that the module can distinguish task-shared
and task-specific representations, we propose a task-adversarial
loss inspired by [26], which sorts out task-specific information
via an adversarial game. More concretely, we set a discriminator
𝐷𝑡 (·) : R𝑑 → {1, ..., 𝑘} to predict the task IDs of the given training
data points. If a representation only captures the common knowl-
edge across tasks, then the discriminator hardly identifies a task ID.
Of this motivation, we can optimize the discriminator by minimiz-
ing the following loss function:

1∑𝑘
𝑖=1 𝑛𝑖

𝑘∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=1

𝐶𝐸 (𝐷𝑡 (𝑓𝑚 (𝑥𝑖𝑗 ), one_hot(𝑖))

+ 1∑𝑘
𝑖=1 𝑛𝑖

𝑘∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=1

𝐶𝐸 (𝐷𝑡 (𝑓𝑚 (A(𝑥𝑖𝑗 )), one_hot(𝑖)), (5)

where one_hot(𝑖) represents a one-hot vector where 𝑖-th entry is 1
and the rest are 0.

Since the discriminator can predict the task IDs of the given
data representations, we aim to deceive the discriminator with our
mBERT encoder, where the discriminator fails in task identification.
Specifically, we guide the encoder so that its output of a given input
makes the discriminator have ambiguous predictions over task IDs.
Formally, we aim to minimize the following task-adversarial loss

L𝑡𝑎 =
1∑𝑘

𝑖=1 𝑛𝑖

𝑘∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=1

𝐶𝐸 (𝐷𝑡 (𝑓𝑚 (𝑥𝑖𝑗 )),
1𝑘
𝑘
)

+ 1∑𝑘
𝑖=1 𝑛𝑖

𝑘∑︁
𝑖=1

𝑛𝑖∑︁
𝑗=1

𝐶𝐸 (𝐷𝑡 (𝑓𝑚 (A(𝑥𝑖𝑗 )),
1𝑘
𝑘
) . (6)

where 1𝑘 represents an all-one vector with 𝑘 dimensions.

5064



Macular: a Multi-Task Adversarial Framework for Cross-Lingual Natural Language Understanding KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Training Process. The training of the multi-task module alter-
nates with the training of the discriminator until the mBERT con-
verges. As mentioned before, the discriminator minimizes Eqn. 5
to obtain the optimal parameters, while the multi-task module
minimizes a compound loss

L𝑚 = L𝑡 + L𝑎 + L𝑡𝑎, (7)

where L𝑡 , L𝑎 , and L𝑡𝑎 refer to the task loss (Eqn. 3), the augmenta-
tion loss (Eqn. 4), and the task-adversarial loss (Eqn. 6), respectively.
While training the multi-task module, we freeze the discriminator
to stabilize the procedure.

The multi-task training process is summarized in Alg. 1.

Algorithm 1: Multi-task Module

Input: Datasets of all tasks {D𝑖 }𝑘𝑖=1; training epoch 𝑡 of the
task discriminator.

Output: The learned multi-task module 𝐹𝑚 (·).
// Do code-switch augmentation

1 for 𝑖 ← 0 to 𝑘 do
2 D𝑎𝑢𝑔

𝑖
= A(D𝑖 )

3 Initialize mBERT 𝐹𝑚 (·) and task discriminator 𝐷𝑡 (·).
// Train 𝐹𝑚 (·) and 𝐷𝑡 (·)

4 while converge do
// Update 𝐷𝑡 (·)

5 for 𝑖 ← 0 to 𝑡 do
6 for batch in {{D𝑖 }𝑘𝑖=1, {D

𝑎𝑢𝑔

𝑖
}𝑘
𝑖=1} do

7 Compute the task adversarial loss based on
Eqn. 6;

8 Update 𝐷𝑡 (·);

// Update 𝐹𝑚 (·)
9 for batch in {{D𝑖 }𝑘𝑖=1, {D

𝑎𝑢𝑔

𝑖
}𝑘
𝑖=1} do

10 Compute the loss function for multi-task module
according to Eqn. 7;

11 Update 𝐹𝑚 (·);

12 return 𝐹𝑚 (·)

3.4 Task-specific Fine-tuning Module
The multi-task module is designed to capture commonness across
tasks. In light of different languages having different grammatical
structures, themulti-task representations are not sufficient to under-
stand a cross-lingual input. Consequently, we design a task-specific
fine-tuning module where one additional mBERT is introduced to
extract the unique task representations. By freezing the well-trained
multi-task module, we can train the newly introduced mBERT (de-
noted as 𝑓𝑡 (·)) and realize the trade-off between the task-shared
and the task-specific representations. The following subsections
discuss how to achieve these two goals.

3.4.1 Aggregation Layer. The aggregation layer is to aggregate the
task-shared representation from the frozen multi-task module and

the task-specific representation from the task-specific mBERT. In-
spired by [41], we aggregate these two representations in aweighted-
sum way. Formally, for a given data point 𝑥𝑖

𝑗
, the aggregated repre-

sentation is written as

𝒗𝑖𝑗 = Agg(𝑓𝑚 (𝑥𝑖𝑗 ), 𝑓𝑡 (𝑥
𝑖
𝑗 )) = 𝛼 𝑓𝑚 (𝑥

𝑖
𝑗 ) + (1 − 𝛼) 𝑓𝑡 (𝑥

𝑖
𝑗 ), (8)

where 𝛼 is a hyper-parameter to balance the weights between the
multi-task representation 𝑓𝑚 (𝑥𝑖𝑗 ) and the task-specific represen-
tation 𝑓𝑡 (𝑥𝑖𝑗 ). The final prediction is output via a fully-connected
layer:

�̂�𝑖𝑗 = 𝜎 (𝑴
𝑖𝒗𝑖𝑗 ) = 𝐹𝑡 (𝑥

𝑖
𝑗 ), (9)

where 𝜎 represents a sigmoid function while conducting binary
classification or represents a softmax function for multi-class classi-
fication. Let𝑴𝑖 denote the prediction layer parameter for task 𝑡𝑖 . As
the multi-task module 𝑓𝑚 (·) is frozen, the training solely updates
the task-specific mBERT 𝑓𝑡 (·).

3.4.2 Loss Function. The training of the task-specific fine-tuning
module relies on four losses: (1) task loss, (2) augmentation loss,
(3) language adversarial loss, and (4) consistency loss. The first two
losses are similar to those defined in the multi-task module, which
can be presented as

L𝑡 =
1
𝑛𝑖

𝑛𝑖∑︁
𝑗=1

𝐶𝐸 (𝐹𝑡 (𝑥𝑖𝑗 ), 𝑦
𝑖
𝑗 ), (10)

L𝑎 =
1
𝑛𝑖

𝑛𝑖∑︁
𝑗=1

𝐾𝐿𝑠 (𝐹𝑡 (A(𝑥𝑖𝑗 ), 𝐹𝑡 (𝑥
𝑖
𝑗 )), (11)

where 𝐾𝐿𝑠 (𝑝, 𝑞) = 𝐾𝐿(stop_grad(𝑝), 𝑞) + 𝐾𝐿(𝑝, stop_grad(𝑞)) is
the symmetrical Kullback-Leibler divergence [46]. The 𝐾𝐿𝑠 (·) en-
courages consistent predictions between the English texts and their
own augmented texts.

The language-adversarial loss is designed to encourage themodel
to learn transferable representation across languages instead of fo-
cusing on language characteristics. Existing studies [5, 7, 23, 24]
have explored adversarial loss in the cross-lingual setting when par-
allel or translation corpora are available. However, considering the
unavailability of parallel corpora, we cannot adopt their solutions.
In replacement, we utilize our augmented data with non-English
words and follow the motivation of adversarial loss to generate
language-invariant representations. To be more specific, we define
a language discriminator𝐷𝑙 (·) : R𝑑 → {0, 1} to distinguish English
text and augmented text, which minimizes the following language
classification loss

1
𝑛𝑖

𝑛𝑖∑︁
𝑗=1

𝐶𝐸 (𝐷𝑙 (Agg(𝑓𝑚 (𝑥𝑖𝑗 ), 𝑓𝑡 (𝑥
𝑖
𝑗 )))), one_hot(0))

+ 1
𝑛𝑖

𝑛𝑖∑︁
𝑗=1

𝐶𝐸 (𝐷𝑡 (Agg(𝑓𝑚 (A(𝑥𝑖𝑗 )), 𝑓𝑡 (A(𝑥
𝑖
𝑗 ))), one_hot(1)) . (12)

The task-specific mBERT 𝑓𝑡 (·) is to learn language-invariant rep-
resentations by fooling 𝐷𝑙 (·). In other words, we encourage 𝑓𝑡 (·)
to prevent the language discriminator from identifying whether or
not the text is in English. As a result, we formulate the following
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language-adversarial loss

L𝑙𝑎 =
1
𝑛𝑖

𝑛𝑖∑︁
𝑗=1

𝐶𝐸 (𝐷𝑙 (Agg(𝑓𝑚 (𝑥𝑖𝑗 ), 𝑓𝑡 (𝑥
𝑖
𝑗 )),

1
2
)

+ 1
𝑛𝑖

𝑛𝑖∑︁
𝑗=1

𝐶𝐸 (𝐷𝑙 (Agg(𝑓𝑚 (A(𝑥𝑖𝑗 )), 𝑓𝑡 (A(𝑥
𝑖
𝑗 ))),

1
2
) . (13)

In the end, we introduce a novel task-level consistency loss,
which is to encourage consistent predictions on a similar task to
the target task of interest. This loss is helpful in learning smooth
representation and capturing generalized patterns. In detail, for
a given task 𝑡𝑖 , we first pick a task 𝑡 𝑗 which is similar to 𝑡𝑖 . For
example, if task 𝑡𝑖 is PI, we can pick NLI task as task 𝑡 𝑗 . Then
we encourage the model predictions on the augmented text of 𝑡 𝑗
and English text of 𝑡 𝑗 to be consistent. Formally, we minimize the
following consistency loss

L𝑐 =
1
𝑛 𝑗

𝑛𝑖∑︁
𝑘=1

𝐾𝐿𝑠 (𝐹𝑡 (A(𝑥 𝑗𝑘 ), 𝐹𝑡 (𝑥
𝑗

𝑘
)). (14)

The above four loss functions are combined to form the final loss
function of the task-specific fine-tuning module as follows:

L𝑠 = L𝑡 + 𝛽1L𝑎 + 𝛽2L𝑡𝑎 + 𝛽3L𝑐 , (15)

where 𝛽1, 𝛽2, and 𝛽3 are hyper-parameters.We summarize the entire
training process of task-specific fine-tuning in the Alg. 2.

Algorithm 2: Task-specific Fine-tuning Module
Input: Datasets of current task and the chosen task D𝑖 , D𝑗 ,

D𝑎𝑢𝑔

𝑖
, D𝑎𝑢𝑔

𝑗
; training epoch 𝑡 of the language

discriminator; coefficients of different loss 𝛽1, 𝛽2,
and 𝛽3; trained multi-task module 𝐹𝑚 (·).

Output: The learned task-specific fine-tuning module 𝐹𝑡 (·).
1 Initialize 𝐹𝑡 (·) and language discriminator 𝐷𝑙 (·).
// Train 𝐹𝑡 (·) and 𝐷𝑙 (·)

2 while converge do
// Update 𝐷𝑡 (·)

3 for 𝑖 ← 0 to 𝑡 do
4 for batch in {D𝑖 ,D𝑎𝑢𝑔

𝑖
,D𝑗 ,D𝑎𝑢𝑔

𝑗
} do

5 Compute the language adversarial loss based on
Eqn. 12;

6 Update 𝐷𝑙 (·);

// Update 𝐹𝑡 (·)
7 for batch in {D𝑖 ,D𝑎𝑢𝑔

𝑖
,D𝑗 ,D𝑎𝑢𝑔

𝑗
} do

8 Compute the loss function for ask-specific
fine-tuning module according to Eqn. 15;

9 Update 𝐹𝑡 (·);

10 return 𝐹𝑡 (·)

4 EXPERIMENT
In this section, we evaluate the proposed Macular with the goal of
answering the following questions.
RQ1 How does Macular perform compared to state-of-the-art

baselines?

RQ2 What are the roles of task adversarial loss, language ad-
versarial loss and consistency loss in model performance
improvements respectively?

RQ3 How does the performance change with respect to different
chosen tasks for multi-task learning?

RQ4 Can the proposed Macular be generalized to other back-
bones?

4.1 Datasets and Experiment Settings
4.1.1 Datasets. To fairly evaluate the performance of the proposed
model, we conduct experiments on four public benchmark datasets
including PAWS-X [21], XNLI [21], QAM [25], and QADSM [25].
These four datasets corresponds to four tasks as paraphrase identi-
fication (PI), natural language inference (NLI), question answering
matching (QA matching), and query advertisement matching (QAD
matching) respectively. Each dataset is in several languages. For
training and validation set, we only have data in English following
the existing work [34]. The developed models are then evaluated
on test dataset in multiple languages. The statistics of datasets is
summarized in Table 1.

Table 1: Statistics of datasets.

Dataset # of languages Task |Train|𝑒𝑛 |Dev|𝑒𝑛 |Test|𝑎𝑣𝑔

PAWS-X 7 PI 49k 2k 14k
XNLI 15 NLI 392k 2k 5k
QAM 3 QA matching 100k 10k 10k
QADSM 3 QAD matching 100k 10k 10k

4.1.2 Baselines. We adopt six state-of-the-art methods as base-
lines:
• mBERT [11] is a multi-lingual version of BERT and is pre-trained
onWikipedia corpora in 104most widely used languages. mBERT
is one of the state-of-the-art methods for cross-lingual natural
language processing tasks.
• Prompt [13] is one of the state-of-the-art fine-tuning paradigms
ans shows great performance in various NLP tasks by reformulat-
ing the classification tasks into a fill-in-the-blank format. Recent
work [27] shows prompt-based methods have the strong transfer-
able ability on English text. We follow their setting and introduce
this into the cross-lingual setting.
• RS-DA [22] is a state-of-the-art cross-lingual approach based on
robust learning. It forces the model to make similar predictions
for representation in the same robust region. We adopt their
official release of RS-DA implementation 1.
• Syn. [2] is a state-of-the-art cross-lingual approach which en-
codes the universal dependency tree structure in mBERT to con-
duct cross-lingual transfer. We adopt the official code release of
Syn.2.
• CoSDA-ML [34] is a state-of-the-art cross-lingual approachwhich
introduces code-switch augmentation into cross-lingual tasks.
To study the role of the task-specific fine-tuning proposed in

subsection 3.4, we propose a reduced model Macular-NoTS, which
1https://github.com/uclanlp/Robust-XLT
2https://github.com/wasiahmad/Syntax-MBERT
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Table 2: Performance comparison on the four datasets. "AVG" means the average accuracy of all languages. The highest scores
per category are in bold. Results of ★ are taken from [25], and results of ∗ are taken from [21]. Results of ♥ are taken from [22]
and [2] or obtain based on their official code release.

Task Method en ar bg de el es fr hi ru sw th tr ur vi zh ja ko AVG

QADSM

mBERT∗ 68.3 - - 60.3 - - 64.1 - - - - - - - - - - 64.2
Prompt 67.2 - - 59.4 - - 62.5 - - - - - - - - - - 63.1

RS-DA [22]♥ 67.4 - - 58.5 - - 61.0 - - - - - - - - - - 62.3
Syn. [2]♥ 68.4 - - 60.8 - - 64.0 - - - - - - - - - - 64.4
CoSDA-ML 68.2 - - 60.1 - - 63.4 - - - - - - - - - - 63.9

Macular-NoTS 69.8 - - 61.0 - - 65.5 - - - - - - - - - - 65.4
Macular 69.9 - - 62.0 - - 66.2 - - - - - - - - - - 66.0

QAM

mBERT∗ 67.5 - - 64.7 - - 66.0 - - - - - - - - - - 66.1
Prompt 68.7 - - 64.0 - - 63.8 - - - - - - - - - - 65.4

RS-DA [22]♥ 66.5 - - 61.5 - - 62.9 - - - - - - - - - - 63.6
Syn. [2]♥ 68.8 - - 63.6 - - 64.7 - - - - - - - - - - 65.7
CoSDA-ML 69.5 - - 64.1 - - 65.5 - - - - - - - - - - 66.4

Macular-NoTS 69.2 - - 64.4 - - 66.5 - - - - - - - - - - 66.7
Macular 69.7 - - 64.9 - - 66.1 - - - - - - - - - - 66.9

PAWS-X

mBERT★ 94.0 - - 85.7 - 87.4 87.0 - - - - - - - 77.0 73.0 69.6 82.0
Prompt 94.0 - - 85.8 - 88.6 87.6 - - - - - - - 79.5 75.4 74.8 83.7

RS-DA [22]♥ 93.5 - - 87.8 - 88.8 88.8 - - - - - - - 81.5 79.3 78.3 85.4
Syn. [2]♥ 94.0 - - 87.8 - 85.9 89.1 - - - - - - - 80.7 75.8 76.3 84.3
CoSDA-ML 94.4 - - 87.0 - 89.8 89.3 - - - - - - - 82.7 78.7 79.7 85.9

Macular-NoTS 95.1 - - 88.2 - 89.4 88.8 - - - - - - - 83.5 79.9 78.8 86.2
Macular 95.2 - - 88.1 - 90.0 89.3 - - - - - - - 83.6 80.3 79.0 86.5

XNLI

mBERT★ 80.8 64.3 68.0 70.0 65.3 73.5 73.4 58.9 67.8 49.7 54.1 60.9 57.2 69.3 67.8 - - 65.4
Prompt 81.3 63.6 67.9 69.6 67.1 73.3 72.0 59.7 67.1 51.1 54.2 61.4 58.1 69.5 68.2 - - 65.6

RS-DA [22]♥ 81.0 66.4 69.9 71.8 68.0 74.7 74.2 62.7 70.6 51.1 55.7 62.9 60.9 71.8 71.4 - - 67.6
Syn. [2]♥ 81.6 65.4 69.3 70.7 66.5 74.1 73.2 60.5 68.8 - - 62.4 58.7 69.9 69.3 - - 68.5
CoSDA-ML 82.8 68.2 71.9 72.5 70.0 76.7 75.4 64.9 72.3 50.5 58.6 63.9 60.7 73.2 72.8 - - 68.9

Macular-NoTS 81.5 68.1 71.2 72.8 69.9 75.7 74.0 64.2 71.2 51.5 59.0 63.6 61.2 71.8 72.6 - - 68.5
Macular 82.6 67.9 72.2 73.8 70.5 76.8 75.5 65.0 72.3 51.3 59.5 63.8 61.8 72.4 73.0 - - 69.2

only use multi-task module introduced in Section 3.3 without the
task-specific fine-tuning module.

4.1.3 Evaluation Metric and Implementation Details. Following ex-
isting works[21, 25], we evaluate four tasks including paraphrase
identification, natural language inference, question answeringmatch-
ing, and query advertisement matching in term of Accuracy. We
implement the backbone based on the Huggingface Transformers
library3 [43]. We tune the batch size and learning rate on the vali-
dation set via a grid search over {4, 8, 16, 32} and {1𝑒 −6, 5𝑒 −6, 1𝑒 −
5, 2𝑒−5, 3𝑒−5, 5𝑒−5} respectively. For the coefficient 𝛼 in Eqn. 8, we
tune it on the validation set via a grid search over {0.1, 0.2, ..., 0.9}.
We set 𝛽1 = 1, 𝛽2 = 𝛽3 = 0.1 for all tasks. The training epochs of
discriminators are set as 2. We use a one hidden layer deep neural
network using ReLU activation as the discriminator. All experi-
ments are repeatedly run 3 times and the corresponding average
results are reported. We run our experiments on the server with 4
NVIDIA RTX A6000 and an Intel Xeon Gold 6254 CPU.

4.2 Performance Comparison
In this section, we report the performance of baselines and the
proposed Macular in Table 2 to answer RQ1.

3https://github.com/huggingface/transformers

Table 2 shows that the proposed Macular outperforms all the
state-of-the-art baselines on four tasks in terms of average accu-
racy over several languages. The best baselines on four datasets
are Syn. and CoSDA-ML, which target cross-lingual tasks by data
augmentation from the perspectives of syntax and semantics. Such
an observation further confirms the effectiveness of data augmenta-
tion in cross-lingual tasks. The proposedMacular improves cross-
lingual task performance by incorporating multi-task mechanism.
The general improvements are observed on different languages
and different tasks. Take QADSM task as an example, the proposed
Macular brings improvements around 2%, 2.0%, 3.4% compared
to the best baselines over English, German and French languages.
The effectiveness of multi-task learning mechanism can be also
justified by the performance of Macular-NoTS. As a reduced ver-
sion of the proposed frameworkMacular,Macular-NoTS reduces
task-specific module and only keeps multi-task module. Such a
model is able to outperform the state-of-the-art baselines on most
of tasks and achieve comparable performance on XNLI. After adding
back task-specific fine-tuning module, Macular is able to integrate
task-shared and task-specific representations to achieve better per-
formance compared to Macular-NoTS on all the tasks in term of
average accuracy over languages.
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AVG ar bg de el en es fr hi ru sw th tr ur vi zh
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Figure 3: Accuracy of Macular with or without the proposed language adversarial loss on XNLI and QAM dataset. The blue and
orange bars show the results on the XNLI dataset, and gray bars show the results on the QAM dataset.

4.3 Effectiveness of Task Adversarial Loss
In this section, we do the ablation study to answer RQ2 regarding
task adversarial loss. To intuitively illustrate the role of task adver-
sarial loss in the proposed model, we design two ablation studies
by removing task adversarial loss from the reduced modelMacu-
lar-NoTS and the proposed framework Macular. The performance
comparison betweenMacular-NoTS without task adversarial loss
and Macular-NoTS is able to help us tell if the task adversarial loss
can help the multi-task module to learn better task-shared repre-
sentation. We further study the effect of the task adversarial loss
on the task-specific fine-tuning module via comparing Macular
without task adversarial loss andMacular. The corresponding ex-
periments are conducted on XNLI and QAM datsets corresponding
to inference and QA matching tasks as examples. We show these
results in Fig. 4.

First, the task adversarial loss is shown to be effective for the
multi-task module to learn better task-shared representation based
on performance comparison between Macular-NoTS and Macular-
NoTS w/o task adversarial loss. The Macular-NoTS outperforms
Macular-NoTS w/o task adversarial loss on QAM and XNLI. One
possible explanation behind this is that task adversarial loss can
help model to learn transferable patterns shared across different
tasks and transferable patterns can further generalise to differ-
ent languages. Second, the task adversarial loss is also confirmed
to help boost the performance of task-specific fine-tuning module.
Fig. 4 showsMacular outperformsMacularwithout task adversarial
loss. For Macular without task adversarial loss, the representation
learned from multi-task module also contains task-specific infor-
mation, which may not learn transferable representation, thereby
degrading performance.

4.4 Effectiveness of Language Adversarial Loss
In this section, we do the ablation study to answer the RQ2 re-
garding langauge adversrial loss. Similar to Section 4.3, we design
an ablation study by removing language adversarial loss from the
proposed framework Macular to intuitively illustrate the role of
language adversarial loss in the proposed model. The performance
comparison betweenMacular andMacular without the language
adversarial loss on XNLI and QAM datasets are reported in Fig. 3.
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Figure 4: Accuracy of Macular-NoTS and Macular with or
without the proposed task adversarial loss on XNLI and QAM
dataset.

Fig. 3 shows that the average accuracy of Macular is higher than
that of Macular without language adversarial loss on two datasets,
confirming the positive role of language adversarial loss in the pro-
posed frameworkMacular. Language adversarial loss is designed
to help the model learn more transferable representation instead
of language-specific patterns. However, due to lacking parallel cor-
pora in different languages, the discriminator faces more difficulties
in learning different language patterns and thus the improvement
from the language adversarial loss in the proposed frameworkMac-
ular is less significant compared to improvements reported in the
existing work [24].
Table 3: Performance comparison of Macular andMacular
w/o consistency loss.

QADSM QAM PAWS-X NLI

Macular w/o Consistency Loss 65.6 66.7 86.4 68.3
Macular 66.0 66.9 86.5 69.2

4.5 Effectiveness of Consistency Loss
In this section, we do the ablation study to answer RQ2 regarding
consistency loss. We show the performance comparison between
Macular andMacularwithout consistency loss to study the effect of
the consistency loss in the proposed model. The results are reported
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in Table 3. Table 3 shows that Macular outperforms Macular with-
out consistency loss on the four datasets. The proposed consistency
loss is able to leverage other similar task data to further augment
the data of target task and enforce a smooth representation for
better transferable ability.

Table 4: Performance comparison of multi-task module with
different task combinations.

QADSM QAM PAWS-X XNLI

Macular-NoTS w/o QADSM - 66.0 86.2 68.4
Macular-NoTS w/o QAM 64.7 - 86.3 68.7
Macular-NoTS w/o PAWS-X 65.4 66.2 - 68.5
Macular-NoTS w/o XNLI 64.9 66.2 85.9 -

Macular-NoTS 65.4 66.7 86.2 68.5

4.6 Sensitivity w.r.t. Chosen Tasks for
Multi-task Training

In this section, we study the effect of task choices on multi-task
module performance to answer RQ3. To show the differences of
tasks, we conduct experiments in four task settings, where we re-
move one task from the four tasks and the removed task is different
in each time. We show the performance comparison of four set-
tings to analyze the effect of each task in Table 4. First, multi-task
training with four tasks achieves best performance compared to
newly proposed four settings. This observation confirms the im-
portance of each task. In a more fine-grained level, NLI task is able
to make general contribution to the performance of other tasks.
Compared to full version of multi-task, multi-task learning without
NLI leads to general performance drops since NLI task is to infer
logic relationship among sentences and is a fundamental task to
others. We also observe that QADSM and QAM can benefit each
other significantly. This is because QAM and QADSM both need to
predict if the last sentence matches the previous one and share lots
of similarities. However, we also find QADSM and QAM can not
provide a large performance boost for PI and NLI, and QAM may
degrade the performance of PI and NLI. The reasons may lie in two
folds: first one is that the QAM and QADSM tasks are to predict
matching relationship which is different from inference task in PI
and NLI. Another one is that the data distributions of them are
different. QAM and QADSM usually have short questions but long
answers while the sentence length in PI and NLI is usually similar.

4.7 Extension to Other Backbone
In this section, we study the generalization ability to answer RQ4.
Similar to Section 4.3, we show the performance of Macular with
XLM-RoBERTa-base (XLM-R) [10] as the backbone on the XNLI
and QAM datasets. The results are reported on Table 5 and Table 6.
According to Table 5 and Table 6, we can find the proposedMacular
still outperform baselines using XLM-R as the backbone. Compared
to XLM-R, both CoSDA-ML and Macular performs better on XNLI
andQAM since XLM-R does not use code-switch data augmentation.
Compared to CoSDA-ML, Macular achieves better performance
because the proposed multi-task training framework can share
common knowledge across tasks and improve model performance.

Table 5: Performance comparison on the XNLI dataset with
XLM-RoBERTa-base [10] as backbone. "AVG" means the aver-
age accuracy of all languages. The highest scores per category
are in bold. Results of ★ are taken from [14].

Method en ar bg de el es fr hi

XLM-R★ 77.7 67.7 72.0 71.7 70.2 72.6 72.7 64.9
CoSDA-ML 84.3 73.9 78.1 77.9 77.1 79.4 78.3 72.4
Macular 84.9 75.0 79.5 78.5 77.6 80.0 79.8 72.8

Method ru sw th tr ur vi zh AVG

XLM-R★ 70.2 60.7 67.4 69.0 61.0 71.0 69.5 69.1
CoSDA-ML 76.6 66.7 73.8 73.9 68.6 76.0 75.8 75.5
Macular 77.8 66.3 74.5 74.5 69.2 77.0 76.0 76.2

Table 6: Performance comparison on the QAM dataset with
XLM-RoBERTa-base [10] as backbone. "AVG" means the aver-
age accuracy of all languages. The highest scores per category
are in bold. Results of ★ are taken from [25].

Method en de fr AVG

XLM-R★ 69.3 68.1 67.8 68.4
CoSDA-ML 68.9 67.3 68.2 68.1
Macular 70.0 68.1 68.7 68.9

It demonstrates that the proposed Macular is a general framework,
which does not rely on a specific backbone.

5 CONCLUSION
In this paper, we explore a novel perspective to tackle the challeng-
ing cross-lingual NLU tasks when no parallel corpora are available.
Towards this end, we propose a multi-task adversarial framework,
namelyMacular, which brings mutual performance improvement
on both source and target languages. The proposed Macular in-
cludes a multi-task module and a task-specific module to infer both
the common knowledge across tasks and unique task character-
istics. More specifically, we combine a task adversarial loss with
task losses defined on both English corpus and corresponding aug-
mented data obtained by code-switch to train the multi-task module
for task-shared representation learning. In the task-specific module,
we propose to combine language adversarial loss, consistency loss
and task loss on source language and augmented data to capture
task-specific information. Extensive experiments are conducted on
four public datasets including paraphrase identification, natural
language understanding, question answering matching, and query
advertisement matching. Experimental results show that the pro-
posed Macular outperforms state-of-the-art baselines on all four
tasks over multiple languages.
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