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ABSTRACT
In this paper, we present mmMesh, the first real-time 3D human
mesh estimation system using commercial portable millimeter-
wave devices. mmMesh is built upon a novel deep learning frame-
work that can dynamically locate the moving subject and capture
his/her body shape and pose by analyzing the 3D point cloud gener-
ated from themmWave signals that bounce off the human body. The
proposed deep learning framework addresses a series of challenges.
First, it encodes a 3D human body model, which enables mmMesh
to estimate complex and realistic-looking 3D human meshes from
sparse point clouds. Second, it can accurately align the 3D points
with their corresponding body segments despite the influence of
ambient points as well as the error-prone nature and the multi-path
effect of the RF signals. Third, the proposed model can infer miss-
ing body parts from the information of the previous frames. Our
evaluation results on a commercial mmWave sensing testbed show
that our mmMesh system can accurately localize the vertices on
the human mesh with an average error of 2.47 cm. The superior
experimental results demonstrate the effectiveness of our proposed
human mesh construction system.
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Figure 1: Our mmMesh system
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1 INTRODUCTION
Recently, researchers have put significant efforts towards building
intelligent wireless sensing systems, which aim to perceive and
understand human activities by leveraging pervasive wireless sig-
nals. Thus far, the most remarkable achievement in this effort is
the construction of human skeletons from the signals reflected off
the human body [16, 34, 35, 47, 49]. Having the skeletal represen-
tations, a follow-up question arises: Is the information contained
in the RF signal rich enough to further reconstruct the shape of
the human body from which we can tell not only the height but
also the somatotype, weight, and even the gender of the monitored
subject?

A recent pioneer study [48] offers a preliminary answer to the
above question. In that work, the authors successfully construct the
human mesh by utilizing RF signals. It is revealed that RF signals
contain sufficient information for the estimation of not only the
pose but also the shape of human body. By overcoming the technical
challenges faced by traditional camera-based human perception
solutions, such as occlusion, poor lighting, clothing, as well as
privacy issues, wireless human sensing technique demonstrates
the potential to enable a new generation of applications capable
of supporting more sophisticated interactions between humans
and their physical surroundings. Despite the inspiring findings
presented in [48], the application scope of their system is limited by
both hardware (i.e., a carefully assembled and synchronized bulky
T-shaped antenna array [2]) and model (i.e., the model only works
when there is a power distribution heatmap in 3D space which
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is hard to obtain; and this design prohibits itself from real-time
implementation).

To tackle this problem, we propose to make use of the point cloud
generated from commercial portable millimeter-wave devices, and
construct dynamic 3D human mesh in real-time. Such system could
facilitate a wide spectrum of real-world applications. For example,
the proposed system can enable more realistic augmented reality
(AR) and virtual reality (VR) applications by capturing players’ real-
time body shape and pose. It can also be used by law enforcement
officers to assess the activity, somatotype, height, weight and gender
of the criminal suspect without exposing themselves by leveraging
the ability of RF signals to traverse walls.

However, to unleash the power of the information carried by
mmWave signals, we have to address the following challenges. First,
due to the limited numbers of antennas on the commercial mmWave
radar, the generated point cloud in each frame is too sparse to
accurately estimate such a complex 3D human mesh. Each frame
only contains hundreds of points, among which only dozens of
points are correlated to the human body. It is technically impossible
to directly estimate the locations of thousands of human mesh
vertices from such a sparse point cloud. Second, how to correctly
associate each 3D point in the point cloud with the corresponding
body segment is also very challenging. Since the points from the
ambient can be mistakenly regarded as the points from the subject,
and the obtained point locations can be inaccurate due to both
the error-prone nature and the multi-path effect of the RF signals.
Third, in some frames, the points related to a specific body segment
may be absent due to the specularity [47] of the RF signal reflection.
How to correctly infer these missing body segments remains a
challenge.

To address the above challenges, we propose a deep learning
framework, namedmmMesh, to construct the dynamic 3D human
mesh from the mmWave signals. First, mmMesh encodes a 3D hu-
man body model, which allows us to use only 86 parameters to
represent a whole human mesh. The incorporation of such a human
body model makes it possible to use dozens of points to infer a
complex human mesh. Second, the proposed mmMesh model can
dynamically locate the moving subject and focus on the points
near the subject other than the points from the ambient objects.
Additionally, though the information in each single point can be in-
accurate, mmMesh is capable of capturing the spatial relationships
among the 3D points and aligning them with their corresponding
body segments. What’s more, our model can discriminatively treat
the points and automatically assign larger weights to the points car-
rying information of higher quality. Third, the proposed mmMesh
model employs a recurrent neural network to infer the missing
body parts from the information of the previous frames.

In order to evaluate the proposed mmMesh framework, we im-
plement a prototype of our mmMesh system using COTS millimeter
wave devices. The evaluation results show that our mmMesh sys-
tem can accurately localize the vertices on the human mesh with an
average error of 2.47 cm. The superior experimental results demon-
strate the effectiveness of our proposed human mesh construction
system. Figure 1 illustrates our proposed mmMesh system1.

1Project Website: https://havocfixer.github.io/mmMesh/

2 PRELIMINARY
mmWave Radar based Point Cloud Generation: In this paper,
we need to calculate the point cloud and the related properties
(range, velocity, and energy) of the points from the mmWave sig-
nals to feed into the designed mmMesh model. The first step is to
measure the distances between mmWave radar and the objects. As
we know, mmWave radar transmits FMCW (Frequency Modulated
Continuous Wave) based chirp signals, which can be character-
ized by a start frequency 𝑓𝑐 , bandwidth 𝐵, and duration 𝑇𝑐 [29].
The IF (Intermediate Frequency) signals are obtained by mixing
the transmitted signals and received signals. Then, FFT operation
(Range-FFT) can be performed on IF signal to separate different
frequency components and thus get the distance between each
object and the radar denoted as 𝑅 =

𝑐 𝑓 𝑇𝑐
2𝐵 , where 𝑐 is the speed

of light and 𝑓 is the frequency of IF signal. The second step is
to calculate the velocities of the objects. Another FFT operation
(Doppler FFT) is conducted to measure the phase changes of IF
signal. Then the velocity can be calculated by 𝑣 = 𝜆𝜔

4𝜋𝑇𝑐 , where 𝜆
is the wavelength of the chirp signal and 𝜔 is the measured phase
change between two chirps with interval of 𝑇𝑐 . The last step is to
calculate the coordinates of the points. In order to generate the
coordinates (𝑥,𝑦, 𝑧) of the object 𝑂 , angle estimation is also re-
quired after calculating the distance and velocity of the object. The
angle of elevation 𝜑 and azimuth 𝜃 of the object can be calculated
as: 𝜑 = sin−1 (𝜔𝑧

𝜋 ) and 𝜃 = sin−1 ( 𝜔𝑥

cos(𝜑)𝜋 ), where 𝜔𝑧 is the phase
difference between azimuth antenna and corresponding elevation
antenna after Doppler-FFT, and 𝜔𝑥 is the phase difference between
consecutive receiving azimuth antennas after Doppler-FFT. Based
on above results of 𝑅, 𝜑 and 𝜃 , the position of the object 𝑂 (i.e.,
(𝑥,𝑦, 𝑧)) can be calculated as 𝑥 = 𝑅 cos(𝜑) sin(𝜃 ), 𝑧 = 𝑅 sin(𝜑) and
𝑦 =

√
𝑅2 − 𝑥2 − 𝑧2.

PointNet: In our proposed deep learning model, we adopt Point-
Net [27] as our backbone network to extract point features from
the point cloud. PointNet [27] is a pioneer work to tackle the point
cloud data using deep learning method. In PointNet, multi-layer
perceptrons (MLP) is leveraged to extract high-level representations
from point cloud features. And max-pooling operation is applied to
aggregate the representations of all the points in the point cloud.
SMPL (Parametric HumanModel): To get realistic human mesh
output, in our model design, we encode a 3D human body model
as one of our model components. Skinned Multi-Person Linear
model (SMPL) [24] is a widely used parametric human model that
estimates 3D human mesh by factoring human body into shape
and pose parameters. Shape parameters ®𝛽 ∈ R10 can be utilized to
control how individuals vary in height, weight, body proportions,
etc. Pose parameters ®𝜃 ∈ R72 is used for the 3D surface deforms
with articulation, which can be represented by 1 global 3D rotation
vector of the human mesh and relative 3D rotation of 23 joints. The
output of SMPL is a triangulated mesh with 6890 vertices, which is
obtained by shaping the template body vertices conditioned on ®𝛽
and ®𝜃 , then articulating the bones according to the joint rotations
®𝜃 via forward kinematics, and finally deforming the surface with
linear blend skinning. The key advantage of SMPL model is that it
can output the locations of 6890 human mesh vertices by taking 10
shape parameters and 72 pose parameter as input.
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Figure 2: System Overview

3 SYSTEM OVERVIEW
In this paper, we consider a real-life scenario where the human sub-
ject is monitored by a mobile phone equipped with mmWave radar
whose signals are reflected back from the human body and ambient
objects. Our proposed mmMesh system in the paper aims to recon-
struct the dynamic human mesh in real-time by taking the reflected
mmWave signals as input. Figure 2 shows an overview of our pro-
posed mmMesh system, which contains three major components:
data collection, data preprocessing, and mesh construction.

Data Collection. This component aims to collect mmWave sig-
nals that can be used to reconstruct the subject’s mesh. In this
process, the commercial mmWave radar emits FMCW signals from
its transmitting antennas and captures the reflected signals using its
receiving antennas. Then the radar hardware can mix the received
signals with the transmitted signal to obtain the IF (Intermediate
Frequency) signals, which are the outputs of the mmWave radar.
Note that a real-time data collection system is achieved by our
UDP protocol based program to enable the dynamic human mesh
construction. In addition to the collection of mmWave data, we also
use the VICON motion capture system [1] to obtain high precision
dynamic pose information of the subject, which is utilized to gen-
erate the ground truth human mesh that can be used to train the
proposed deep learning model in our system.

Data Preprocessing. This component is designed to remove
the noisy signals reflected from the static ambient objects, and then
generate the 3D point cloud so that they can be fed to the proposed
deep learning models. Specifically, we first calculate the heatmap
using both range-FFT and doppler-FFT and cancel the signal energy
from the static objects. Then we calculate the AoA (Angle of Arrival)
of the signals in both azimuth plane and elevation plane. Based
on the range information and the angle information, the locations
of the 3D points can be easily estimated. The points’ coordinates
combined with other point features (e.g., point velocity) will be fed
to our proposed deep learning model.

Mesh Construction. The goal of this component is to construct
the dynamic human mesh from the point cloud generated by the
data preprocessing component. In this component, we propose a
novel deep learning model that can estimate 3D human mesh by
simultaneously encoding the global and local structures of the 3D
point cloud in spatial dimension as well as the structural trans-
formation of the points in temporal dimension. The details of the

proposed mmMesh model will be described in section 4. A real-time
mesh rendering tool is also implemented in the developed system.

4 METHODOLOGY
In this paper, our goal is to construct dynamic 3D human mesh
using sparse 3D point cloud data collected by the mmWave device.
Our proposedmmMeshmodel should be able to tackle the following
three challenges to achieve this goal.

The first challenge is the sparsity caused by the low resolution of
the commercial mmWave radar device. In RF-Avatar [48], which is
the only work using RF signals to estimate human mesh, there are 4
transmitting antennas and 16 receiving antennas assembled on a T-
shape holder [2]. However, the commercial mmWave radar has only
3 transmitting antennas and 4 receiving antennas [13], which results
in only a resolution of 15◦ for azimuth plane and a resolution of 60◦
for elevation plane. Due to the low resolution of the device, each
frame of the collected data only contains hundreds of points, among
which only dozens of points are correlated to the human body. As
a consequence, we have to estimate the locations of thousands of
vertices on the human mesh based on the information provided by
only dozens of points, which is technically impossible. To address
this challenge, we incorporate the Skinned Multi-Person Linear
(SMPL) model [24] into our model as an additional constraint. SMPL
is a generative 3D human body model which parameterizes the
human mesh using a low-dimensional shape vector (to characterize
the height, weight, and body proportions of human body), a pose
vector (to characterize the deformation of the human mesh under
motion), a global translation vector, and a binary gender parameter.
SMPL can act as a strong constraint which allows us to use only
86 parameters to represent the whole 3D human mesh instead of
directly estimating the location of each of the thousands of vertices.
In addition, SMPL model can encode the anatomic prior knowledge
of human body. For example, the length of one’s arm span is roughly
equal to one’s height, and the human body and limbs tend to have
a symmetric structure. These anatomic prior knowledge can help
us produce a realistic human mesh.

Secondly, in real world, it is difficult to align 3D points precisely
with their corresponding body parts due to: 1) the ambient points,
which are generated from the RF signals reflected by the surround-
ings and can be mistakenly aligned with the body segments of the
subject; 2) the error-prone natural of the RF signals; 3) the multi-
path effect of the RF signals. Thus, it is challenging to correctly align
the points in the point cloud and accurately construct the human
mesh. To address this challenge, we first alleviate the influence of
the ambient points. Specifically, in our model design, we filter the
ambient points and consider only the points close to the subjects.
Then, instead of directly learning the information from each single
noisy point which may be affected by the error-prone nature of the
RF signals, we propose to learn the local structure of the point cloud,
i.e., the spatial relations between each 3D point and its neighboring
points. For example, given a single point, it might be difficult to
tell which part of human body the point belongs to. However, a 3D
point on the subject’s arm should be close to the other points on the
arm or connected body segments, but far away from the points on
the feet. Obviously, the spatial relation of the 3D points can provide
us some knowledge about the shape and pose of the body segments,
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Figure 3: Model Overview

which is more robust to the error compared with the knowledge
extracted from a single point. To capture the local structure of the
point cloud, our proposed mmMesh model can automatically group
the neighboring points and associate point groups with corresponding
body segments in a dynamic manner. In addition, the qualities of
different 3D points in the point cloud are usually quite different
due to various reasons (e.g., the points generated from the RF sig-
nal reflected by the subject tend to have higher qualities than the
ambient points; the points generated from the RF signals which are
reflected multiple times in the space may have low qualities; the
points that have high energy values in the corresponding Doppler-
FFT heatmap tend to have high qualities). In our model design, we
propose to use attention mechanism to discriminatively treat the
points in the point cloud and automatically assign larger weights
to the points that have higher qualities.

The third challenge is that some parts of the human body may
not have correlated 3D points in a specific frame due to the specu-
larity [47] of the RF signal. To address this challenge, we use the
information (such as pose, shape and location of the subject) from
previous frames to infer the missing body part information in the
current frame. Specifically, we incorporate the Recurrent Neural
Network (RNN) into our model to take advantage of the information
from the previous frames.

Figure 3 gives an overview of our proposed mmMesh deep learn-
ing framework, which is mainly composed of four modules: a Base
Module to extract the high-level representation of each point, a
Global Module to aggregate the overall point cloud information, an
Anchor Points Module to learn the local structure information of
the point cloud, and a SMPL Module to map the generated represen-
tation vector to the final humanmesh. The details of this framework
will be described in the following subsections.

4.1 Base Module
The input of this module consists of the feature vectors of all the 3D
points in the point cloud. In our work, one feature vector contains
six features, which are x, y, z coordinates, the range value, the

velocity value, and the energy value of the points in Doppler-FFT
heatmap. These feature vectors are stacked into a 2-dimensional
matrix as the input. In this module, the outputs are the high-level
representations for all the points which are extracted by the share-
weighted MLP (Multi-Layer Perceptron).

To be detailed, we use 𝑥𝑡 to denote the input matrix of the 𝑡-th
frame (obtained at time 𝑡 ), and use 𝑥𝑡

𝑖
to denote the feature vector

of the 𝑖-th point in the input matrix 𝑥𝑡 . The output of this module
for 𝑖-th point in matrix 𝑥𝑡 is denoted as 𝑟𝑡

𝑖
= MLP(𝑥𝑡

𝑖
;𝜃𝑟 ), in which

𝜃𝑟 is the parameter set of the MLP layers.

4.2 Global Module
To locate the moving subject and estimate his/her shape and pose
in a frame, we first need to extract the global information of the
whole point cloud. The proposed Global Module can aggregate
the information from all point representations derived by the Base
Module, and combine them with the information from previous
frames to form a global representation vector.

As shown in Figure 3, for each representation vector 𝑟𝑡
𝑖
derived

by the Base Module, we first use MLP layers to map it into a higher-
level vector representation 𝑐𝑡

𝑖
= MLP(𝑟𝑡

𝑖
;𝜃𝑐 ). Then we aggregate

all the point representations into a single vector. Note that the
aggregation function should be permutation invariant to the order
of the input, because the 3D point cloud is an unordered set. In other
words, the aggregation function should output exactly the same
output, no matter how the order of the input points are changed. In
existing point cloud related work such as PoinNet/PointNet++ [27,
28], the max-pooling operation is usually used as the aggregation
function to filter out redundant information and extract the most
prominent features. However, in our scenario, since the point cloud
is sparse and has little redundant information, using max-pooling
operation may lead to the loss of some details in one frame. To
address this problem, we adopt attention mechanism to aggregate
the representations of all points in the current frame. Attention is
the weighted sum of all point features without information loss
and it allows us to dynamically learn relative contributions of each
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point [15]. Suppose 𝐿(𝑥) denotes a linear mapping function that
can map a vector into a scalar in attention operation. Then, we can
get the aggregated global presentation 𝑓 𝑡 of all points in current
frame as follows:

𝑓 𝑡 =
∑
𝑖∈𝑁 𝑡

𝐿(𝑐𝑡𝑖 ;𝜃 𝑓 ) · 𝑐
𝑡
𝑖 , (1)

where 𝑁 𝑡 is the number of points in current frame and 𝜃 𝑓 is the
parameter in the linear mapping function 𝐿. A key point here is that
the attention function should be invariant to point permutation so
that it can be applied to point clouds. The authors in [43] proved
that a function 𝑓 (𝑋 ) is invariant to the permutation of instances
in 𝑋 , iff it can be decomposed in the form of 𝜌 (∑𝑥 ∈𝑋 𝜙 (𝑥)), for
suitable transformations 𝜙 and 𝜌 . Thus, our attention operation is
invariant to point permutation, and it can be used to aggregate 3D
point cloud features.

As aforementioned, some parts of the human body may not have
correlated 3D points in a specific frame due to the specularity of the
RF signal. We address this problem by leveraging the information
of the previous frames to infer the missing parts. Specifically, we
feed the representation vector 𝑓 𝑡 to the multi-layer LSTM and fuse
it with previous global representations. Then we can get the final
global representation of 𝑔𝑡 = LSTM(𝑔𝑡−1, 𝑓 𝑡 ;𝜃𝑔), where 𝑔𝑡−1 is
the global representation of the previous frame and 𝜃𝑔 is a set of
parameters to be learned in LSTM.

4.3 Anchor Point Module
We can get a rough estimation of the shape and pose of the subject
by the Global Module. To make the estimated mesh more accurate,
we need to learn the local structures of the point cloud to acquire
fine-grained information. Traditionally, to learn the local structures
of point cloud, the sampling method is first used to sample some
points from the point cloud as grouping center. Then the points
in the point cloud are grouped into several subsets. Finally, the
representation of each subset is extracted and taken as the local
structure representation [28].

However, the above method can only be applied to static objects
and is not suitable to our scenario. The sampling strategy in the
above method always samples points from the whole point cloud
without distinguishing whether they are on the human body or not.
There may be significant number of sampled points that are located
far away from the human subject and thus contribute nothing but
noise to the mesh construction. Moreover, The set of sample points
are dynamically changing frame by frame and thus may lead to
inconsistency across continuous frames.

To address this challenge, we propose to dynamically choose
some “virtual locations” near the subject as anchor points and use
them to group the 3D points. In our design, each anchor point can
group a subset of points that are related to a part of human body.
For example, the anchor points near the ground can group more
points reflected from the calves of the human body, and the anchor
points on the left of the subject may be more related to points on
the left arm of the subject. Specifically, after deriving the global
representation 𝑔𝑡 from the Global Module, we use an Anchor Point
Generator (APG) to generate the desired anchor points by taking
𝑔𝑡 as input. In our design, the APG contains two phases: template
generation and template displacement, as shown in Figure 4. In

Figure 4: Anchor Point Generator (APG)

template generation phase, we first predefine an anchor point tem-
plate at the origin as 𝑧, which is a 3D cubic lattice composed of 𝑁𝑧
anchor points (red points in Figure 4) whose locations are fixed
with respect to the anchor point template. In addition, we assume
that the convex hull of the designed anchor point template is large
enough to cover the subject. In template displacement phase, we
first use a fully connected neural network (i.e., 𝐹𝐶) to predict the
displacement and then move the predefined anchor point template
to the desired location. Here we use 𝛿𝑡 to denote the displacement
of the template at time 𝑡 , where 𝛿𝑡 = 𝐹𝐶 (𝑔𝑡 ;𝜃𝛿 ) is a coordinate
vector with length 3. Then the anchor point template generated
by APG at time 𝑡 is located at 𝑧𝑡 = 𝑧 + 𝛿𝑡 . Similar to the dynamic
bounding box in object tracking task, the anchor point template can
be dynamically generated at the locations of the moving subject
frame by frame. This template can cover the 3D points of the human
subject as many as possible, and meanwhile it is far from the points
generated by the ambient objects.

As shown in Figure 3, based on the locations of the anchor points,
we next group the 3D points from the Base Module into several
subsets. One challenge here is that how some dynamic body seg-
ments (e.g., a swinging hand) can be captured by the anchor points
with relatively fixed locations (with respect to the human body),
since the points on these dynamic body segments can appear in
the neighborhoods of different anchor points in different frames.
In our model, though the anchor point template has fixed shape,
the associations between the anchor points and the 3D points (on
different body segments) are dynamic. And the dynamic associ-
ations are automatically learned during the point grouping and
aggregation. Specifically, for each anchor point, we take the near-
est 𝑁𝑠 3D points into a group. Suppose 𝑧𝑡

𝑘
denotes the location of

the 𝑘-th anchor point at time 𝑡 and the indexes of its nearest 𝑁𝑠
points are represented as 𝑁𝑆𝑃 (𝑧𝑡

𝑘
). We use𝐶𝑂𝑂𝑅(𝑥𝑡

𝑖
) to represent

the coordinate vector (i.e., a vector composed of 𝑥 , 𝑦, 𝑧 coordinate
values) of point 𝑥𝑡

𝑖
in the Base Module. Then, for each point 𝑥𝑡

𝑖

where 𝑖 ∈ 𝑁𝑆𝑃 (𝑧𝑡
𝑘
), we can derive its high-level representation as

ℎ𝑡
𝑖
= MLP( [𝑧𝑡

𝑘
;𝐶𝑂𝑂𝑅(𝑟𝑡

𝑖
)−𝑧𝑡

𝑘
; 𝑟𝑡
𝑖
];𝜃ℎ), where 𝜃ℎ denote the param-

eters of the MLP. Note that here we also encode the anchor point
location (i.e., 𝑧𝑡

𝑘
) and the spatial relationship (i.e., 𝐶𝑂𝑂𝑅(𝑟𝑡

𝑖
) − 𝑧𝑡

𝑘
)

between the anchor point and its grouped points into the input of
MLP. Similar to Eq. (1), the aggregation process based on the 𝑘-th
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anchor point can be denoted as:

𝑠𝑡
𝑘
=

∑
𝑖∈𝑁𝑆𝑃 (𝑧𝑡

𝑘
)
𝐿(ℎ𝑡𝑖 ;𝜃𝑠 ) · ℎ

𝑡
𝑖 , (2)

where 𝜃𝑠 denote the parameters of the linear mapping function 𝐿.
Next, we need to further aggregate the information in the anchor

point representations. Since we carefully design the spatial relation-
ship among the anchor points and arrange them as a 3D lattice in
the cube, we can regard all the anchor point representation vectors
as a 4D tensor 𝑠𝑡 . Then we can aggregate the vectors of all the an-
chor points into one vector using 3D CNN as 𝑑𝑡 = 3𝐷𝐶𝑁𝑁 (𝑠𝑡 ;𝜃𝑑 ),
where 𝜃𝑑 denote the parametes in 3D CNN. Finally, similar to Sec-
tion 4.2, information in the previous frames is fused with 𝑑𝑡 using
multi-layer LSTM as 𝑎𝑡 = LSTM(𝑎𝑡−1, 𝑑𝑡 ;𝜃𝑎), where 𝜃𝑎 denote the
parameters of LSTM.

4.4 SMPL Module
In this module, we first concatenate the global representation vector
from the Global Module and the local representation vector from
the Anchor Point Module, and then map them into pose, shape,
translation and gender representation vectors. Finally we feed the
vectors into SMPL model to output the skeleton and meshe of the
subject.

Specifically, a multi-layer fully connected neural network is used
to get the representations as following:

[𝑃𝑡 ;𝐵𝑡 ;𝑇 𝑡 ;𝐺𝑡 ] = 𝐹𝐶 ( [𝑔𝑡 ;𝑎𝑡 ];𝜃𝑝 ),
where 𝑃𝑡 is the pose vector, 𝐵𝑡 the shape vector,𝑇 𝑡 is the translation
vector, and 𝐺𝑡 is the gender vector. Note that in original SMPL
paper, the length of the pose vector is 72 and it is composed of 24
rotation vectors. However, according to [50], 3D rotation vector is
not a continuous rotation representation to neural network. Thus,
following [50], we use 6D representation to represent the rotation.
And the length of the pose vector 𝑃𝑡 in our model is 144 = 24 × 6.
Then the vertex vector 𝑉 𝑡 and skeleton vector 𝑆𝑡 can be obtained
by feeding the 𝑃𝑡 , 𝐵𝑡 and 𝐺𝑡 into the SMPL model as following:

[𝑉 𝑡 ; 𝑆𝑡 ] = SMPL(𝑃𝑡 , 𝐵𝑡 ;𝐺𝑡 ) +𝑇 𝑡 .
Note that the mesh models for male and female are different. Our
SMPL Module can automatically select the corresponding mesh
model based on gender vector 𝐺𝑡 . Since SMPL model only takes
the 3D rotation vectors as input, we implement a function inside
the SMPL model to transform the 6D rotation representations to
the 3D rotation vectors. In addition, the parameters of SMPL model
are trained in [24] and keep freezing in our model.

4.5 Model Loss
The model loss is the summation of 5 components as following:

𝐿𝑜𝑠𝑠 =
∑

𝐾 ∈{𝑉 ,𝑆,𝐵,𝛿 }
𝛼𝐾 ∗

𝑇∑
𝑡

∥𝐾𝑡 − GT (𝐾𝑡 )∥𝐿1

+𝛼𝐺 ∗
𝑇∑
𝑡

𝐻 (𝐺𝑡 ,GT (𝐺𝑡 )) .

(3)

Here we use𝑉 , 𝑆 , 𝐵,𝐺 to denote the vertex matrix, skeleton matrix,
shape matrix, and gender matrix obtained in the SMPL module
from the first frame to the 𝑇 -th frame. 𝛿 is the displacement matrix

obtained using APG in the Anchor Points Module. We use GT (𝐾)
to denote the corresponding ground truth of the generated matrix𝐾
and 𝛼𝐾 denote the hyper-parameters. 𝐻 is the hinge loss. Normally,
cross entropy will be used to classify the gender of the subject.
However, the cross entropy loss can be very large, which may affect
other losses. To address this problem, we use hinge loss on the
gender vectors. Note that even though the vertex loss is the joint
result of pose, shape, displacement, and gender of the subject, we
still add the skeleton loss, shape loss, displacement loss, and the
gender loss to guide the fast convergence of the designed deep
model and to avoid the model falling into the local minimum.

5 EXPERIMENTS
5.1 Testbeds
5.1.1 VICON System. In this paper, we use the VICON motion
capture system [1] to generate ground truth 3D human pose for
model training. The VICON system is shown in Figure 5(c), and it
consists of 21 VICON Vantage cameras which emit and receive in-
frared light. During the pose data collection, 27 high precision pearl
markers are placed on each subject to represent the joint points of
the subject. Figure 5(a) shows the positions of these markers on
the subject. Since these markers are covered with highly reflective
materials, the infrared light reflected from the marker surface can
be easily captured by the the VICON Vantage camera. The errors
cause by the location of each marker is less than 2𝑚𝑚 [25]. The
sampling rate of the system is 10 frames per second.

5.1.2 mmWave Testbed. The millimeter-wave radar we used in this
paper is TI AWR1843BOOST, which is a commercial and portable
(8.3𝑐𝑚 × 6.4𝑐𝑚, 30𝑔) mmWave device produced by TI [13]. We also
utilize TI DCA1000EVM to enable real-time data capture and stream-
ing from mmWave radar, as shown in Figure 5(b). The mmWave
device contains 3 transmitting antennas and 4 receiving antennas.
The 3 transmitting antennas emit FMCW wave chirps in turns. The
emitted RF singal will be reflected by the human body and the
surroundings, then received by the 4 receiving antennas. For each
FMCW chirp, the frequency of RF will increase from 77 GHz to 80.9
GHz. The mmWave device is set to send 10 frames per second. Here
each frame is composed of 128 chirps, and each chirp is composed
of 256 sampling points. Based on our device setting, the maximum
sensing range of the mmWave device is about 11 m, the range res-
olution is about 4.3 cm, the maximum sensing velocity is about
4.5 m/s, and the velocity resolution is about 7.1 cm/s. To enable
a real-time system, a UDP-based program is developed to collect
packets from the device and parse the packets into the mmWave
data frame. In the experiment, we place the mmWave testbed on
a table (the height is about 92 cm), and the distance between the
mmWave testbed and the activity area is about 1.5 m.

5.2 Data Collection and Preprocessing
5.2.1 Data Collection. In the experiment, 20 volunteers (includ-
ing 13 males and 7 females) are asked to perform 8 daily activities
within the activity area. The 8 activities include: (1) torso rotations;
(2) clockwise walking; (3) counter-clockwise walking; (4) arm swing
(the subject can randomly swing his/her arms horizontally or up-
ward or downward); (5) walking back and forth; (6) walking back
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Figure 5: Testbeds and the basic scenario of mesh construction

and forth with arm swing; (7) walking in the place; (8) lunges (the
subject keeps performing lunge pose alternatively use his/her left
and right leg). For each activity, the subject keeps performing it for
5 minutes (i.e., 3000 frames per activity per subject).

5.2.2 Ground Truth Mesh Construction. In our experiment, we
use SMPL model to generate the ground truth human mesh to
train our proposed deep learning model. Specifically, we take the
pose information, shape information, translation information, and
gender information of the subjects as the input of SMPL model.

The pose information and translation information can be ob-
tained from the VICON system as described in Section 5.1.1. Note
that the pose representations obtained from the VICON system are
the absolute positions of the joints. As shown in Figure5(a), the
location of each joint is obtained by averaging the locations of the
two markers that are nearest to the joint (the two markers are in
the front and the back of the human body, respectively). Since the
pose representations are the rotation vectors of the joints, we then
calculate the rotations on the joints using the absolute positions
obtained from the VICON system. It is notable that the joints from
VICON system and the input pose vectors of SMPL model are not
one-to-one mapping, the SMPL model has more pose vectors than
the joints from VICON system. Since the missing joints have little
effect on the designed daily activities, we simply set those rotation
vectors with constant values.

For the shape information, we use the approach in [5] to obtain
the ground truth shape vector for each subject in a canonical pose.
To best match the human mesh model with the ground truth height
of the subject, we also manually adjust the shape vector values.

5.2.3 Point Cloud Generation. After obtaining the frames of the
mmWave data, we first calculate the Range-FFT and Doppler-FFT.
Then a static clutter removal algorithm is used to remove the static
background noise. The algorithm subtracts the average value of
the Doppler-FFT heatmaps from all receiving antennas, which is
helpful to reduce the energy reflected from static ambient objects.

Traditionally, CA-CFAR [8] algorithm is usually applied on the
Doppler-FFT heatmap to select prominent pixels as potential 3D
points using fixed threshold. However, in our work, we directly
use the Doppler-FFT heatmap pixels with the highest values as the
potential 3D points. The main reason is that the heatmap energy
differs from frame to frame. Using the fixed threshold will result in
the number of selected points varying largely in different frames.
For example, if we use the fixed threshold, one frame may have
a hundred of selected points while another frame may have only
several or even zero selected points. This effect will be severe when
the testing environment changes. Especially when we conduct
experiment in occlude scenarios as described in Section 5.5.4, the
energy distribution changes largely when the signal from the device
is occluded by objects. Though we can manually set the threshold
for each environment, we choose to select 128 heatmap pixels with
the highest values for each frame to generate consistent numbers of
point clouds among different frames and various environments. The
noisy points generated by the multi-path effect is also alleviated
in this step, since the signal that has been reflected several times
tends to have lower energy value than the directly reflected signal.
Then, we calculate the 3D coordinates of the points based on the
the selected pixels. Finally, we take the x-y-z coordinates, the range
value, the velocity value, and the Doppler-FFT value of the point
as the input feature vector of each 3D point to feed to the deep
learning model.

5.3 Model Setting and Model Training
In this section, we describe the setting of the deep learning model.
In Base Module, we use 3 layers of shared MLPs and the sizes of the
layers are 8, 16, and 24, respectively. In Global Module, we also use
3 layers of shared MLPs and the sizes of the layers are 32, 48, and
64, respectively. The LSTM in Global Module has 3 layers and the
size of each layer is 64. In Anchor Points Module, we use 81 anchor
points which construct a 3 × 3 × 9 3D cubic lattice. The distance
between a pair of neighboring anchor points is set to 0.3 m. The
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number of grouped points around each anchor point is set to 8. The
size of the shared MLPs in Anchor Points Module is the same as
that in Global Module. We use 3 layers of 3D CNN to aggregate
the featueres of anchor points into a vector with size 64. Similarly,
there are 3 layers of LSTM in Anchor Point Module whose sizes are
all set to 64. The FC has 2 layers in SMPL Module, which maps the
concatenated vectors into a parameter vector with size 158.

During model training, we use the first 2400 frames (i.e., 80% of
the data) of all subjects’ activities for training, and the remaining
600 frames (i.e., 20% of the data) for testing. The learning rate is set
to 0.001. The batch size is 32. The sequence length for training is
64. The number of training batches is 500 K. The weights assigned
to different losses in Eq. (3) are set to 𝛼𝑉 = 0.001, 𝛼𝐵 = 0.1, and
𝛼𝑆 = 𝛼𝛿 = 𝛼𝐺 = 1.0. Note that the ground truth gender is used
to select the mesh model in the SMPL Module during the training.
However, during testing, we only use the predicted gender to select
the mesh model. We use PyTorch to implement our deep learning
model, and TITAN V is used to train the model.

5.4 Baselines and Metrics
5.4.1 Baselines. Since there is no existing model to reconstruct
dynamic human mesh from point clouds, we design the baselines
by removing or replacing the modules in the architecture of the
proposed model as following:
B+G+S (Baseline A). In this baseline, the Anchor Point Module
is removed. We inherit the Base Module, the Global Module, and
the SMPL Module from the proposed mmMesh model without any
change.
B+G-Max+S (Baseline B). This model shares the same structure
with Baseline A except that the attention-based grouping is replaced
with max-pooling operation in Global Module.
B+G+FPS-ATTN+S (Baseline C). In this baseline, besides inher-
iting the Base Module, Global Module, and SMPL Module from
the proposed mmMesh model as in Baseline A, we use FPS-based
sampling [28] and aggregate the features of grouped points using
attention mechanism.
B+G+FPS-Max+S (Baseline D). This model is very similar to Base-
line C except that we replace attention-based aggregation method
with the max-pooling operation. For this baseline, the model design
to learn the local structure is the same as that of PointNet++ [28]
which utilizes the FPS-based sampling and max-pooling operation
based aggregation method.

5.4.2 Metrics. We use the the following metrics to evaluate the
performance of our proposed framework:
Average Vertex Error (V) [6, 48]. We compute the average vertex
error by averaging the Euclidean distance between the vertices lo-
cated on the predicted human mesh and the corresponding vertices
on the ground truth mesh for all the subjects and activities. This
metric can evaluate the overall performances of the location error,
pose error, shape error, and gender error.
Average Joint Localization Error (S) [16, 48]. This metric is de-
fined as the average Euclidean distance between the joint locations
of the predicted human mesh and the ground truths for all the
subjects and activities.
Average JointRotationError (Q). Besides the joint position, joint
rotation is also critical when generating the pose. This metric is

reported as an additional metric to evaluate the accuracy of the
constructed pose. It is defined as the average differences between
predicted joint rotations and the ground truth rotations. As de-
scribed in Section 5.2.3, some joint rotations in SMPL model are
set to constant values. There is no need to take these joints into
consideration. Thus, when calculating the average joint rotation
error, we only consider the rotations of shoulder joints, elbow joints,
hip joints, and the knee joints from both sides of the subject.
Mesh Localization Error (T). We also use mesh localization error
to assess the precision of subject localization. This metric is defined
as the average Euclidean distance between the root joint location
of the predicted human mesh skeleton and the ground truths for
all the subjects and activities.
Gender Prediction Accuracy (G). We also calculate the accuracy
of the predicted gender to evaluate if the proposed model can dis-
tinguish gender of the subject.

5.5 Experiment Results
5.5.1 Qualitative Results for Basic Scenario. We first qualitatively
evaluate the proposed framework in the basic scenario that is shown
in Figure 5(c). The setting of the training phase for the basic sce-
nario is described in Section 5.3. The qualitative results are shown
in Figure 6, in which rows (a)-(c) show 3 male subjects conduct-
ing activities 8, 5, and 4, respectively. Rows (d)-(f) show 3 female
subjects conducting activities 1, 6, and 7, respectively. As we can
see, the six subjects in this figure have different shapes. The first
picture in each row shows the video frame when the subject con-
ducting the activity. The second picture and the third picture show
the corresponding ground truth human mesh generated by the VI-
CON system and the predicted human mesh based on our proposed
mmMesh model, respectively. The results show that our generated
meshes look realistic. From this figure, we can see the shapes of
the generated human meshes are very similar to the corresponding
subjects in the video frames. In addition, our model can predict the
correct gender of each subject, which demonstrates that our model
is able to correctly sense the gender information of the subjects and
generate the human meshes with reasonable shapes, even if the
subjects in our experiment have different heights and shapes. The
results in this figure also show that our proposed mmMesh model
can accurately estimate the human poses. This demonstrates that
our model is able to capture the subtle body structure information
from the local structure of the point cloud.

The rows (g)-(l) in Figure 6 show the consecutive frames that
one subject is conducting clockwise walking (activity 2) within the
activity area. The first, second, and third columns show the video
frames, ground truth meshes, and the human meshes generated by
our model, respectively. To better show the activity process, we
pick every other frame in the video (i.e., the time gap between each
pair of consecutive frames is 0.2𝑠). We can see that the constructed
mesh in consecutive frames looks not only very similar to the
ground truth meshes, but also very smooth. This is achieved by
taking advantage of LSTM layers in our model, which encodes the
temporal information in the network. This result proves that our
model can generate smooth dynamic human meshes.

5.5.2 Quantitative Results for Basic Scenario. In this section, we
quantitatively evaluate the performance of our proposed model
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Figure 6: The examples of the constructed human mesh in the basic scenario.

Table 1: Results for Basic Scenario.

Model V(cm) S(cm) Q(°) T(cm) G(%)

Baseline A 3.75 3.43 4.57 2.42 99.5

Baseline B 3.88 3.58 4.74 2.54 99.0

Baseline C 3.43 3.10 4.26 2.16 99.2

Baseline D 3.63 3.29 4.42 2.32 97.2

mmMesh 2.47 2.18 3.80 1.27 99.8

based on the metrics described in section 5.4.2. The results are
shown in Table 1. As can be seen, for all five metrics utilized in
this paper, our proposed mmMesh model achieves the best results.
This demonstrates that our model is able to generate more accurate
poses, shapes, genders and translations of the subjects than all the
baselines.

To study the difference between the attention-based aggrega-
tion method and the max-pooling-based aggregation method, we
compare the performance of baselines A and B as well as that of
baseline C and D. Baseline A and baseline B share the same structure
except that baseline A uses attention mechanism while baseline
B uses max-pooling operation. Similarly, Baseline C and baseline
D share the same structure except that baseline C uses attention
mechanism while baseline D uses max-pooling operation. As we
can see in the Table 1, although the gender accuracy of baselines A
and C is slightly worse than that of baselines B and D, respectively,
baselines B and D perform better than baselines A and C on other
metrics. This means the overall performance of the proposed model
is improved by replacing max-pooling operation with attention
mechanism. This is because the point clouds in our scenario are
very sparse. Using max-pooling operation may cause the model

insensitive to subtle structures of the point cloud and impair the
model performances. As a substitution, the attention mechanism is
able to distinctively sum up the point representations and aggregate
them with little information loss.

Next, we study the importance of learning local structures of
point cloud to the construction of human mesh. In baselines A
and B, there are no design to learn local structures of point cloud.
But in baselines C and D, we use FPS-based sampling to learn the
local structures. In addition, our proposed mmMesh model use
anchor point based method to learn local structures. From Table 1
we can see that the models (i.e., baselines C and D and our proposed
model) with the design to learn local structures perform better than
those (i.e., baselines A and B) without learning local structures,
even baseline A uses attention mechanism and baseline C use max-
pooling operation. This is mainly because we can capture more
detailed information about the human body structure by learning
local structures of point cloud.

The results in Table 1 also show that our proposed model out-
performs baseline C and the performance on metrics V, S and T are
all improved by about 1 cm. This is because our model uses anchor
point based sampling method while baseline C uses FPS-based sam-
pling. The anchor point sampling method can dynamically sample
the points near the subject and avoid including the noisy points
from the ambience.

We also evaluate the performance of our model with different
training rates of the data. Specifically, we vary the training rate
from 50% to 80%, and the results are shown in Table 2.It can be seen
that the performance of our model only has a small drop when the
training rate is reduced from 80% to 50%, which demonstrates the
robustness of our model.

5.5.3 Performance Evaluation for Occluded Scenario. To investigate
the effect of occlusion on the performance of our proposedmmMesh
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Table 2: Results for Different Training Rates

Training Rate V(cm) S(cm) Q(°) T(cm) G(%)

50% 2.89 2.54 4.40 1.47 99.1

60% 2.76 2.42 4.18 1.41 99.5

70% 2.65 2.34 4.00 1.39 99.5

80% 2.47 2.18 3.80 1.27 99.8

Figure 7: The examples of the constructed human mesh in
occluded scenarios and cross-environment scenarios. (The
mmWave radar is marked inside the red box)

framework, we place barriers of different material between the
subject and the mmWave radar. As shown in Figure 7, the first
column of rows (a), (b), and (c) show three occluded scenarios,
where we use a foam box, a cloth screen, and a bamboo panel as
the barriers, respectively. For each scenario, the VICON system is
adopted to collect the ground-truth poses. In this experiment, we
ask 5 subjects to perform the 8 activities for 2 minutes. In Figure 7,
the second, third, and fourth columns show the video frame, the
corresponding ground truth human mesh, and the human mesh
constructed by our model, respectively. Note that in these three
occluded scenarios, we directly use the trained mmMesh model
from the basic scenario during the inference. As we can see, our
model can still generate high quality human mesh with accurate
pose and shape, even the transmitted signal is completely occluded
by different barriers.

Table 3: Results for different occluded scenario.

Occluded Scenario V(cm) S(cm) Q(°) T(cm) G(%)

Foam Box 5.93 5.54 8.35 3.88 96.8

Cloth Screen 6.33 5.87 8.88 3.88 96.8

Bamboo Panel 6.45 6.06 8.67 4.57 87.4

Table 4: Results for the room with different settings.

Room Settings V(cm) S(cm) Q(°) T(cm) G(%)

Dark scenario 5.47 5.14 7.91 3.13 97.3

Furnished 5.95 5.53 8.27 3.93 94.4

We also quantitatively study the performances of our model in
the occluded scenarios. Table 3 reports the results using the five
metrics that are described in Section 5.4.2. By comparing the results
for basic scenario in Table 1, we can see that the occlusion degrades
the performance of our proposed model. However, the human mesh
with high quality can still be constructed. There are mainly two
reasons for the increase of the errors. One reason is that the signal
phase is changed when the signal penetrates the barriers, which
can affect the location accuracy of the points. Since the material
of bamboo has the most compact structure, we can see that the
bamboo panel has the largest effect on the model performance
and the foam has the smallest effect. The other reason is that the
systematic error may be introduced during the re-calibration of the
VICON system and re-adjusting of markers. Note that the data in
the basic scenario and that in the occluded scenario are collected
on different dates. The VICON system need to be re-calibrated each
time we use it. Since the coordinated system are labelled using the
calibration wand manually, some errors may be introduced in this
step. What’s more, during the data collection, we need to re-adjust
the locations of the markers attached on the suit manually, this step
can also introduce some errors.

5.5.4 Performance Evaluation for Cross-environment Mesh Con-
struction. Another challenge when using our mesh reconstruction
system in real world is that how to make it adapt to different envi-
ronments. As aforementioned, mmWave signals can be reflected
by the objects in the ambient environment. Different objects in
different environments may cause different ways of transmitting
of the signals.

In order to investigate the effect of environment changing on
the performance of our system, we first conduct experiment in
the room with the VICON system as illustrated in rows (d) and (e)
of Figure 7. Row (d) shows a dark scenario, in which the vision-
based methods usually have poor performance. Row (e) shows a
furnished scenario, in which the furniture (e.g., tables and chairs) is
randomly placed around the activity area. The quantitative results
for the two scenarios are reported in Table 4. In this experiment,
we still directly use the model trained in the basic scenario without
additional training. The ground truth poses are collected using the
VICON system.
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Figure 8: The examples of the constructed human mesh in
different environments

From the results we can see that even the environment is changed,
our model can still construct good human mesh. The results in
the dark scenario demonstrate the advantage of RF-based sensing
solutions over the vision-based sensing solutions when the light
condition is bad. Note that the performance here is not as good as
that in basic scenario. The reason is similar to that for the occluded
scenario. The re-calibration of the VICON system and re-adjusting
of markers can introduce systematic errors. For the furnished sce-
nario, our model can also output high quality humanmeshes, which
means the anchor point module is able to filter out the ambient
noisy points by dynamically shift anchor point template with the
locations of the subjects.

In addition, to demonstrate the feasibility of our model in real
practice, we further evaluate it in some more challenging scenarios.
Specifically, we evaluate our model in completely new scenarios as
illustrated in Figure 8. This figure shows the subjects conducting
different activities in different environments and the corresponding
human mesh generated based on our model. These environments
include a corridor (a), an outside plaza (b), a passage beside a build-
ing (c), a meeting room (d), a hallway inside a building (e), and a
student lounge. The rows (g) - (i) in Figure 8 showmore challenging
scenarios, where the barriers (foam box, cloth screen and bamboo
panel) mentioned in Section 5.5.3 are placed between the subject
and the mmWave radar in the hallway scenario (e). The correspond-
ing model outputs are placed next to the video frames, which are
obtained by directly using the trained model in the basic scenario.
In this figure, the angles of the camera may vary when placed in
different environments, and the output meshes are rendered from
the perspective of the mmWave radar. Note that due to the absence
of the VICON system in these scenarios, we cannot generate the
ground truth meshes. However, the results in Figure 8 show that
the poses and the shapes of the generated meshes are very similar
to that of the subjects in the video frames, which demonstrates the
effectiveness of our model in different environments.

It is worth mentioning that during our experiments, we found
that our model may estimate inaccurate human shape at the very
beginning of inference. As shown in Figure 9, Figure 9(a) shows
the first frame of a video, Figure 9(b) shows the corresponding esti-
mation result, and Figure 9(c) shows the ground truth shape of the
subject in Figure 9(a). We can see that the estimated human shape
in Figure 9(b) is somehow different from the ground truth shape of
the subject in Figure 9(c). The reason for the inaccurate inference is

Figure 9: An inaccurate shape estimation case: (a) the first
frame in a video; (b) the estimated mesh; (c) the ground-
truth shape.

that the point cloud generated by the commercial mmWave radar is
too sparse to enable an accurate shape estimation from one single
frame. Our model tackles this problem by incorporating the infor-
mation from the previous frames. However, there is no referable
historical information at the very beginning of the inference. Thus,
there might be inaccurate shape estimation at the very beginning
of the inference.

5.6 Real-time System Implementation
In this paper, we aim to achieve real-time human mesh reconstruc-
tion. When collecting the data, the RF signals are transmitted and
received by TI AWR1843BOOST mmWave device, and the attached
TI DCA1000EVM enables the real-time IF signal translation using
UDP protocol. In our design, we write a program to unpack the
UDP packets and assemble them into the data frames. Note that
a data frame will not be passed to the next step until it is com-
pletely assembled. Theoretically, the total mount of floating-point
arithmetic of our whole model is 11.4𝑀 per frame, which is quite
small. In practice, the time delay in the data collection process is
about 110 ms. The assembled data frames are then fed into the data
preprocessing component (as shown in Figure 2) to generate the
point clouds. For each frame, the preprocessing time is about 28
ms using Intel i7-8700K CPU. After generating the point clouds,
we next feed them into NVIDIA GTX1080Ti GPU for deep model
inference. The inference time of the mmMesh model is about 16 ms.
Finally, the 3D humanmeshes are rendered using the same GPU and
the time delay is about 3 ms. Note that to make the programs more
flexible, each program has its own clock to fetch the data from the
previous step, which introduces a time delay about 100 ms. Thus,
the total time delay in our system is about 257 ms. Figure 10 shows
the consecutive frames of human mesh generated by our system.
We can see that the rendered meshes in (d), (e), and (f) are roughly
corresponding to the subject poses in (a), (b), and (c) respectively,
which demonstrates that our system can achieve almost a real-time
mesh reconstruction with a delay within about 3 frames (0.3s).

6 RELATEDWORK
mmWave-based Sensing: mmWave has been increasingly ex-
plored to enable various sensing tasks, especially the human sensing
tasks, such as human monitoring and tracking [3, 38, 44], pose es-
timation [21, 30, 31], behavior detection and recognition [19, 23,
32, 46], human acoustic sensing [22, 39], and human detection and
identification [9, 41]. Being different from all the above tasks, our
work takes a step forward and aims to construct dynamic human
mesh using the mmWave signals in real-time. In addition to human
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Figure 10: The examples of the constructed human mesh in consecutive video frames

sensing, mmWave is also utilized on industrial vibration measure-
ment tasks [14] and car imaging tasks [10]. However, the proposed
methods are only suitable to sense stationary objects. Since the
subject in human sensing is always dynamic, those methods can
not be directly applied to human sensing tasks.
HumanPoseEstimation fromWireless Signals: In recent years,
many wireless sensing systems have been developed to estimate
human pose [2, 16, 34, 35, 47, 49]. Among them, [34, 35, 47] focus on
2D pose estimation. RF-Pose [49] can estimate 3Dmulti-person pose.
However, the method requires specially designed testbed with an
carefully assembled and synchronized antenna array. Most recently,
Jiang et al.[16] propose WiPose to construct 3D human skeletons
from WiFi signals. However, WiPose requires that the locations of
the subjects should be fixed. In the above human pose estimation
works, none of them can achieve real time estimations. In addition,
all the wireless devices used in these works are discommodious to
move. In our paper, the proposed mmMesh system can not only
generate the human mesh as an enrichment of the human pose, but
also be implemented in a real-time manner. It is worth mentioning
that in our system design, we choose the commercial and portable
mmWave device instead of the common WiFi device. The main
reason is that the common WiFi devices do not use FMCW signal
which enables accurate measurements (e.g., ToF) of RF signals, and
thus cannot achieve as good performance as mmWave radars.
3D Human Mesh Construction:With the proliferation of deep
learning, recent works explore various deep learning models to
directly reconstruct 3D human mesh from images [6, 17, 20, 26,
33, 42, 51], videos [4, 11, 18, 33, 40, 45], point cloud [12, 15, 36, 37],
and wireless signals [48]. Despite the great success achieved by
image/video based approaches, the performance of these methods
can be severely impaired by bad illumination, occlusion and blurry.
Most importantly, privacy issues occur when cameras are deployed
to monitor the human subjects. In contrast, our mmWave based
approach can not only avoid the privacy issue but also be immune
to the poor lighting and occlusion conditions. Since our proposed
method reconstruct 3D human mesh from point cloud collected
with mmWave radar, here we mainly introduce the previous works
that utilize point cloud or wireless signals for human mesh recon-
struction.

Point Cloud based: Recently, with the rapid development of 3D
point cloud acquisition technologies, 3D human mesh construction
from point cloud have been attracting more and more attention
[7, 15, 36, 37]. As pioneering models for point cloud feature learn-
ing, PointNet [27] and PointNet++ [28] are widely used as the basic
block to develop other methods for 3D human mesh reconstruction.
And the parametric human body model (e.g., SMPL [24]) is also

used in [15, 36, 37] for point cloud based human mesh reconstruc-
tion. However, these solutions only focus on the clean 3D point
cloud without noise points from the ambience. And the point cloud
contains thousands of point from the whole human body. Thus,
these solutions cannot be directly applied in our scenario.

Wireless Signal based: As far as we know, there is only one work
that have explored 3D human mesh reconstruction using wireless
signal. RF-Avatar [48] first obtains a 4D RF tensor from its FMCW
radios, and this 4D RF tensor is composed of many 3D energy dis-
tribution tensors arranged along the time dimension. Then, the
proposal network, self-attention mechanism, and adversarial train-
ing are applied on the 4D RF tensor to output the 3D human mesh
sequence. Our designed system is different from RF-Avatar. First,
RF-Avatar is based on a specialized testbed which is a carefully
assembled and synchronized USRP-based bulky antenna array [2],
and this limits its real-world deployments. In contrast, our proposed
system can accurately estimate the human mesh by using only a
commercial mmWave device that can be directly purchased online
at a low cost. Second, the model design in [48] can only be applied
to the devices based on which the energy map of the 3D space can
be obtained. However, our proposed model can be deployed on any
devices that can generate 3D point clouds (e.g., Kinect, LiDAR, and
depth camera), which enables a wide spectrum of real-world appli-
cations. Third, our system is able to directly estimate the dynamic
human mesh in a real-time manner while [48] can only perform
the evaluation offline due to its model design.

7 CONCLUSIONS
In this paper, we study how to use mmWave signals to construct
dynamic human mesh in real-time. Specifically, we propose a deep
learning framework, named mmMesh, which can construct human
mesh using the point cloud generated from mmWave signals. This
framework encodes a 3D human body model to tackle the sparsity
of the point cloud. It also incorporates an anchor point module to
handle the misalignment of the point cloud with the human body
segments and leverages the information from the previous frames
to address missing body parts problem. In addition, we implement
a prototype of our mmMesh system using COTS millimeter wave
devices. The evaluation results show that our mmMesh system can
accurately localize the vertices on the human mesh.
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