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Abstract
Estimating the treatment effect benefits decision
making in various domains as it can provide the
potential outcomes of different choices. Existing
work mainly focuses on covariates with numerical
values, while how to handle covariates with textual
information for treatment effect estimation is still
an open question. One major challenge is how to
filter out the nearly instrumental variables which
are the variables more predictive to the treatment
than the outcome. Conditioning on those variables
to estimate the treatment effect would amplify the
estimation bias. To address this challenge, we pro-
pose a conditional treatment-adversarial learning
based matching method (CTAM). CTAM incorpo-
rates the treatment-adversarial learning to filter out
the information related to nearly instrumental vari-
ables when learning the representations, and then it
performs matching among the learned representa-
tions to estimate the treatment effects. The condi-
tional treatment-adversarial learning helps reduce
the bias of treatment effect estimation, which is
demonstrated by our experimental results on both
semi-synthetic and real-world datasets.

1 Introduction
Treatment effect, also known as causal effect, refers to the ef-
fect that one variable (i.e., the treatment) exerts on the other
variable (i.e., the outcome). Accurate and reliable estima-
tion of treatment effects would largely benefit decision mak-
ing across various domains, due to its ability to reflect the
outcomes of different choices. For example, in the medical
domain, doctors can recommend the best therapy for a spe-
cific patient if the effect of the therapy on the recovery rate
is known; in the education field, teachers can adopt the best
teaching method according to the effect of teaching methods
on the test score; and in the advertising area, business owners
can choose the best platform to advertise based on the effect
of the platform on the response rate. In the above examples,
the therapy/teaching method/platform is the treatment, and
the recovery rate/test score/response rate is the outcome.

The treatment effect is defined as the change of the out-
come if the intervention is made on the treatment, suppos-

ing the covariates are unchanged (i.e., condition on those co-
variates), where covariates are the variables/features that are
related to the treatment as well as the outcome. For exam-
ple, in the aforementioned medical case, the patient’s demo-
graphic information and physical examinations are the covari-
ates. Many methods have been developed for treatment effect
estimation [Imbens and Rubin, 2015].

Most of the existing work focuses on numerical covariates,
while little attention has been paid to the textual covariates.
However, in real world, text data are almost everywhere, such
as clinical notes, movie reviews, news, social media posts,
and etc. Different from the structured and well-defined nu-
merical covariates, textual covariates contain richer informa-
tion and can be summarized at different levels, such as word
level, topic level, semantics level, and etc. This property of
text data brings some new challenges into treatment effect es-
timation with textual covariates. In particular, some textual
covariates that are very predictive to the treatment assign-
ment might not be that predictive to the outcome. Such co-
variates are referred to as the nearly instrumental variables.
In treatment effect estimation, existing work [Pearl, 2012;
Wooldridge, 2016] has shown that conditioning on the nearly
instrumental variables tends to amplify the bias in the analy-
sis of causal effects. Therefore, the nearly instrumental vari-
ables should be excluded when estimating the treatment ef-
fect. Thus, the major challenge in estimating the treatment
effect with textual covariates is: How to filter out the nearly
instrumental variables?

In existing methods, filtering out the nearly instrumental
variable is achieved by covariate re-weighting [Kuang et al.,
2017a; Chang and Dy, 2017; Diamond and Sekhon, 2013]
or feature selection [Kuang et al., 2017b; Tibshirani, 1996;
Rassen et al., 2011], when the covariates are numerical. How-
ever, when the covariate contains text data, the effectiveness
of the re-weighting or feature selection based approaches
would be limited, as those methods would be restricted to
only one specific level of information contained in the tex-
tual variable, which leads to insufficient summarization of
text covariates and further leads to insufficiency in filtering
out nearly instrumental variables.

To handle the above challenges, we propose the
Conditional Treatment-Adversarial learning based Matching
method (CTAM), inspired by the conditional adversarial ar-
chitecture in [Zhao et al., 2017]. CTAM first learns the latent
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representation of all covariates, in which the information con-
tained in text variables can be fully summarized. Then in the
learned representation space, we adopt the nearest neighbor
matching (NNM), for its interpretability, to estimate the out-
come if the treatment had been changed. The key characteris-
tic of CTAM is the conditional treatment adversarial training
procedure whose goal is to filter out the information related
to nearly instrumental variables in the representation space.
In this procedure, the treatment discriminator, along with the
representation learner and the outcome predictor, play a min-
imax game: The treatment discriminator is trained to predict
the treatment label correctly, while the representation learner,
corporately working with the outcome predictor, aims to fool
the treatment discriminator. Through the conditional treat-
ment adversarial training procedure, the learned representa-
tion discards the extraneous information specific to treatment
assignment, and meanwhile retains the information related to
outcome prediction. Consequently, the proposed method ben-
efits the treatment effect estimation with text covariates.

To evaluate the effectiveness of the proposed method, we
first conduct experiments on two semi-synthetic datasets. Ex-
perimental results show that the proposed method outper-
forms the state-of-the-art methods. Furthermore, in the real
world dataset, we verify the matching quality, and demon-
strate that by imposing the conditional treatment adversarial
training, the dependency between the treatment assignment
and the nearly instrumental variables are removed.

2 Preliminaries
We first introduce some important notations. Let W de-
note the treatment, and W ∈ RN , where N is the number
of records in the dataset, and Wi is the treatment of the i-
th record. When the treatment is binary, the records with
Wi = 1 form the treated group and the others belong to the
control group. Let X denote all covariates excluding the tex-
tual covariates, and X ∈ RN×d, where d is the number of
non-textual covariates. Let T denote the textual covariate,
and T = {T1, T2, . . . , TN}, where Ti is the text that belongs
to the i-th record, and Ti = [ti,1, ti,2, . . . , ti,NTi

], where ti,j
is the j-th word in the i-th record, and NTi

denotes the total
number of words in Ti. The outcomes of different treatments
are the potential outcomes, and let Y ωi denote the potential
outcome of the i-th individual/record with the ω-th treatment.
The observed outcome (i.e., factual outcome) is denoted as
Y F , and Y F ∈ RN .

In this work, we follow the potential outcome frame-
work [Splawa-Neyman et al., 1990; Rubin, 1974] and the
following assumptions ensure that the treatment effect can be
identified.
Assumption 1: Stable Unit Treatment Value Assumption
(SUTVA). The potential outcomes for any unit do not vary
with the treatment assigned to other units, and, for each unit,
there are no different forms or versions of each treatment
level, which lead to different potential outcomes.
Assumption 2: Consistency. The potential outcome of treat-
mentw equals to the observed outcome if the actual treatment
received is w.
Assumption 3: Ignorability. Given pre-treatment covari-

ates, i.e., the covariates affect the treatment, treatment as-
signment is independent of the potential outcomes.
Assumption 4: Positivity. For any set of values of pre-
treatment covariates X, treatment assignment is not deter-
ministic [D’Amour et al., 2017]: ∀w and x, ∃ η ∈ (0, 0.5),
s.t. η < P (W = w|X = x) < 1− η.

The treatment effect can be measured at the individual,
population, and treated group level, which is known as the in-
dividual treatment effect (ITE), the average treatment effect
(ATE) and the average treatment effect on the treated group
(ATT), respectively. With the above four assumptions, the
ITE, ATE, and ATT can be identified as1:

ITEi = E[Y1|X = xi]−E[Y0|X = xi] = Y 1
i − Y 0

i ;

ATE = EU [Y1 −Y0] = 1
|U |
∑
i∈U (Y 1

i − Y 0
i );

ATT = EU1
[Y1 −Y0] = 1

|U1|
∑
i∈U1

(Y 1
i − Y 0

i );

(1)
where Y 1

i and Y 0
i are the potential treated and control out-

comes; U is the whole population and U1 is the treated group.
With the above knowledge, the problem is defined as

Input: The non-textual covariates X , textual covariates T ,
treatment assignment W and the observed outcome Y F .
Output: ITE, ATE, and ATT.

3 Methodology
3.1 Motivation
The underlying causal graph of our proposed method is
shown in Figure 1. In the figure, Z and Z

′
together are the la-

tent representations of the observed textual covariates T and
non-textual covariates X . Among the latent variables, Z

′
de-

notes the nearly instrumental variables, which is more pre-
dictive to the treatment assignment than the outcome Y . As
mentioned previously, conditioning on the nearly instrumen-
tal variables would amplify the treatment effect estimation
bias. Our objective is to learn the latent representations that
filter out the information related to nearly instrumental vari-
ables.

Figure 1: Causal Graph of the CTAM

1Here we define the treatment effect with binary treatment. For
the case of treatment effect with multiple treatments, please refer
to [Lopez et al., 2017].
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Figure 2: CTAM Framework

Our proposed method introduces the conditional treatment-
adversarial learning to eliminate the information related to
nearly instrumental variables Z

′
as much as possible in the

latent representations.

3.2 Framework
Figure 2 shows the framework of the proposed CTAM
method. CTAM contains three major components: text pro-
cessing, representation learning, and conditional treatment
discriminator. Through the text processing component, the
original text is transformed into vectorized representation S.
After that, S is concatenated with the non-textual covariates
X to construct a unified feature vector, which is then fed into
the representation neural network to get the latent representa-
tionZ. After learning the representation, Z, together with po-
tential outcomes Y , are fed into the conditional treatment dis-
criminator. During the training procedures, the representation
learner plays a minimax game with the conditional treatment
discriminator: By preventing the discriminator from assign-
ing correct treatment, the representation learner can filter out
the information related to nearly instrumental variables. The
final matching procedure is performed in the representation
space Z. The following sections introduce each component
in detail.

3.3 Text Processing and Representation Learning
Text processing procedure converts the text data T to the nu-
meric representation S. Various methods are developed to
map the word from the vocabulary to the numerical vector,
such as word embedding (GloVe [Pennington et al., 2014],
word2vec [Mikolov et al., 2013], etc.), document-term ma-
trix (bag of words [Harris, 1954; Manning et al., 1999], in-
verse document frequency [Sparck Jones, 1972]). We adopt
the word embedding learned by GloVe [Pennington et al.,
2014] in this procedure, and S is the average of all word-
embeddings in one document.

Following the text processing, in the representation pro-
cedure, the learned numerical vector of textual covariate S
is first concatenated with the numerical covariate X . The

concatenated vector is denoted as C. After concatenation,
a representation neural work is adopted to map the con-
catenated vector C to the latent representation Z: Z =
Φrep(C; ΘΦ), where Φrep is a feed-forward neural network
with ReLU [Nair and Hinton, 2010] as the activation function
and ΘΦ denotes the set of its parameters.

The latent representation Z learned by Φrep contains the
information related to nearly instrumental variables, which
would amplify the treatment effect estimation bias. In order
to eliminate such information, we design the following con-
ditional treatment-adversarial learning procedure.

3.4 Conditional Treatment Discriminator and
Conditional Treatment-Adversarial Learning

Conditional Treatment Discriminator
The input of the conditional treatment discriminator is the la-
tent representation Z and the potential outcomes Y , and the
output is the treatment assignmentW . Our discriminator con-
ditions on the potential outcomes, which allows the latent rep-
resentation to correlate with the treatment only through the
potential outcome distribution. In other words, by playing
the minimax game, which is introduced in the following sec-
tion, with the conditional treatment discriminator, the learned
latent representation is capable of eliminating the conditional
dependency with the treatment assignment.

The conditional treatment discriminator is a feed-forward
neural network, denoted as D(Z, Y ; ΘD), where ΘD is a set
of parameters. The goal of this discriminator is to correctly
predict the treatment assignment. The loss of the conditional
treatment discriminator is measured by the cross-entropy:

LD(ΘD,ΘΦ,ΘΨ) =

E(c,w)∼(C,W )[− logD(Φrep(c; ΘΦ),Ψpop(Φrep(c); ΘΨ); ΘD)],
(2)

where Ψpop(·; ΘΨ) is the pseudo outcome predictor with ΘΨ

as its parameters, which is defined as follows.
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Pseudo Outcome Prediction
The conditional treatment discriminator requires the potential
outcomes of all treatments, which is formulated as:

Y = Ψpop(Φrep(C); ΘΦ) = {Ψi(Φrep(C); Θ
(i)
Φ )}nw

i=1, (3)

where nw is the number of total treatments, {Ψi}nw
i=1 is out-

come prediction model for each treatment, ΘΨ is the set of
parameters of Ψpop, and Θ

(i)
Ψ is the parameter set of i-th out-

come prediction model. As the potential outcome here is only
for the conditional treatment discriminator and is not the ex-
plicit result, we name it as the pseudo potential outcome.

Conditional Treatment-Adversarial Learning
The objective of conditional treatment-adversarial learning is
to filter out the information related to the nearly instrumen-
tal variables. As the nearly instrumental variables refer to the
variables that are more predictive to the treatment assignment
instead of the outcome, this filtering strategy is equivalent to
removing the conditional dependency between the latent rep-
resentation and the treatment assignment. Therefore, we train
an adversarial learning model to achieve this goal. The dis-
criminator D, along with Φrep and Ψpop, plays a minimax
game. The discriminator D aims to minimize Eqn. (2) in or-
der to assign correct treatment. Meanwhile, the representa-
tion learner Φrep and the outcome predictor Ψpop are trained
to maximize the above loss to filter out the information that
benefits the discriminator D. When the conditional treatment
discriminator can be successfully fooled, the information that
enhances the treatment assignment is eliminated from the la-
tent representation, i.e., the information related to nearly in-
strumental variables can be successfully filtered out.

3.5 Loss Function and Parameter Training
Loss Function
The final loss of the three-player game is:

L = Lp(ΘΦ,ΘΨ)− λLD(ΘD,ΘΦ,ΘΨ), (4)

where LD is defined in Eqn. (2) and λ is the hyper-parameter.
Lp(ΘΦ,ΘΨ) is the sum of the group distance and the pseudo
outcome prediction loss, which is defined as:

Lp =
∑NW

i=1 [
∑NY

m=1 Lpd(Z{i}{m}, Z{i}{m})

−α
∑
m 6=k Lpd(Z{i}{m}, Z{i}{k})]

+βLpseu(Ŷ , Y F ),

(5)

where NY is the number of label classes in the outcome, NW
is the number of treatments, Lpd(·, ·) is the sum of pairwise
distance between the two input matrices, Z{i}{m} denotes the
representations of records that are assigned with the i-th treat-
ment and their observed outcomes are the m-th label class,
and Ŷ is the corresponding prediction of the observed out-
come, which can be obtained from Eqn. (3).

The first term in Lp measures the pairwise distance be-
tween the records sharing the observed outcome label un-
der the same treatment, and the second term measures the
pairwise distance between the records that have different ob-
served outcomes. Minimizing the difference of two terms

makes similar records close to each other, while dissimilar
records far from each other in the representation space. The
third term is the pseudo outcome prediction loss, and mini-
mizing it allows better potential outcome predictions for con-
ditional treatment discriminator.

Model Training
The training procedure involves optimizing the minimax
game among the discriminator D, representation learner Φ
and the pseudo outcome predictor Ψ, which can be viewed
as:

mini ΘΦ,ΘΨ
maxΘD Lp(ΘΦ,ΘΨ)−λLD(ΘD,ΘΦ,ΘΨ). (6)

The three players (D,Φ and Ψ) are alternatively updated as:

ΘD ← ΘD + ηD
∂L
∂ΘD

,

ΘΦ ← ΘΦ − ηΦ
∂L
∂ΘΦ

,

ΘΨ ← ΘΨ − ηΨ
∂L
∂ΘΨ

,

(7)

where ηΦ, ηΨ, and ηD are the learning rates. To prevent the
model collapsing, we can update the ΘD several times before
continuing to update the other parameters.

Nearest Neighbor Matching
After the model training, the estimated outcome of the i-th
record/individual with the ω-th treatment, denoted as Ŷ ωi , can
be obtained by nearest neighbor matching: Ŷ ωi = Y Fν , with
ν = arg minν∈Uω

dist(zi, zν), where Y Fν is the observed out-
come of the ν-th record, Uω is the group with the ω-th treat-
ment, dist(·, ·) is the Euclidean distance, and zi (zν) is the
representation of the i-th (ν-th) record. Then the ITE, ATE
and ATT can be obtained by Eqn. (1) accordingly.

4 Experiment
In this section, we conduct experiments on both semi-
synthetic and real world datasets to evaluate the following:
1) our proposed method can work well on both the textual co-
variates and the non-textual covariates, and 2) the conditional
treatment discriminator in our proposed method improves the
performance on treatment effect estimation.

4.1 Experiment Settings
Baselines
We compare our proposed CTAM method with the follow-
ing widely-adopted nearest neighbor matching (NNM) based
methods: Mahalanobis distance matching (MDM) [Rubin,
1979], propensity score matching with logistic regression
(PSM) [Rosenbaum and Rubin, 1983], dimensionality re-
duction by random linear projections (DR-RLP) [Li et al.,
2016], Hilbert-Schmidt independence criterion based near-
est neighbor matching (HSIC-NNM) [Chang and Dy, 2017],
and structural topic model based matching (STM) [Mozer
et al., 2018]. Besides the NNM based methods, we also
compare the proposed method with the following repre-
sentative baselines: linear regression with `1 regulariza-
tion (LASSO) [Tibshirani, 1996]; Bayesian additive regres-
sion trees (BART) [Chipman et al., 2010]; and causal for-
est regression (CF) [Wager and Athey, 2017]. Among the
above baselines, LASSO and HSIC-NNM take the nearly

Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence (IJCAI-19)

4109



PEHE εATE εATT

LASSO 3.47± 1.26∗ 0.88± 0.33∗ 1.75± 0.73∗

BART 4.10± 1.27∗ 1.98± 1.36∗ 2.87± 1.44∗

CF 2.69± 0.98 1.88± 0.53∗ 2.20± 0.80∗

MDM 3.29± 0.80∗ 0.64± 0.61∗ 0.74± 0.57∗

PSM 2.69± 0.33∗ 0.21± 0.14∗ 0.15± 0.11∗

DR-RLP 4.03± 1.44∗ 0.85± 0.57∗ 0.10± 0.05
STM 2.29± 0.41 0.20± 0.15∗ 0.07± 0.04

NNM-HSIC 4.25± 1.21∗ 0.83± 0.71∗ 0.12± 0.11

CTAM (Ours) 2.06± 0.03 0.08± 0.01 0.09± 0.01

Table 1: Results on News Dataset. Each entry is the mean and stan-
dard deviation of evaluation metric over 50 repeated realizations.
The star marker (*) indicates that the results of that baseline and
CTAM have statistically significant difference.

instrumental variables into consideration by covariates re-
weighting/selection. For comparison fairness, the baselines
share the same text processing procedure with CTAM.

Parameter Setting
The parameters of baselines are set as suggested by the origi-
nal papers, and the hyper-parameter search of CTAM follows
the scheme in [Shalit et al., 2017].

Evaluation Metrics
The following evaluation metrics are adopted to compare the
proposed methods with the baselines:
(1) PEHE: precision in estimation of heterogeneous ef-
fect [Hill, 2011], which is defined as: PEHE =√

1
n

∑n
i=1

(
ITEi − ˆITEi

)2

. (2) EATE: error of ATE estima-

tion. EATE is defined as: EATE = |ATE− ˆATE|. (3) EATT: error
of ATT estimation. EATT is defined as: EATT = |ATT− ˆATT|.

4.2 Experiment on News Dataset
Dataset
The News dataset is first introduced in [Johansson et al.,
2016], which studies the effect of viewing devices to the user
experience. The text covariate T is represented by the term-
document matrix, and the vocabulary size is 3,477. The treat-
ments are different devices: Wi = 1 denotes the news in the
i-th record is viewed in mobile and Wi = 0 denotes the desk-
top. The generations of treatment assignment and the out-
come (reading experience) are the same as [Johansson et al.,
2016]. We generate 1, 000 samples for each realization and
repeat the sampling procedure 50 times.

Results and Analysis
The results of our proposed method and the baseline ap-
proaches are shown in Table 1. Overall, our method has
the best performance under PEHE and EATE measurements,
and has competing performance compared with the best base-
line STM under EATT measurement. This observation demon-
strates that the conditional treatment discriminator can effec-
tively filter out information related to the nearly instrumental
variables and therefore reduce the bias of treatment effect es-
timation.

PEHE εATE εATT

LASSO 6.59± 4.36∗ 1.58± 0.58∗ 2.33± 0.61∗
BART 5.55± 4.07∗ 2.12± 1.25∗ 0.22± 0.38

CF 5.10± 4.24∗ 2.95± 1.74∗ 2.75± 1.62∗
MDM 2.38± 1.05∗ 0.12± 0.08 0.31± 0.31
PSM 3.52± 1.34∗ 0.78± 0.59∗ 4.08± 1.17∗

DR-RLP 3.07± 1.65∗ 0.16± 0.13∗ 0.42± 0.35∗
NNM-HSIC 1.71± 0.43 0.14± 0.11∗ 0.17± 0.17

CTAM (Ours) 1.64± 0.04 0.09± 0.01 0.14± 0.02

Table 2: Results on IHDP Dataset. Each entry is the mean and stan-
dard deviation of evaluation metrics over 100 repeated realizations.
The star marker (*) indicates the baselines over which CTAM has
statistically significant improvement.

4.3 Experiment on IHDP Dataset
The proposed method is motivated by the existence of nearly
instrumental variables which are commonly observed in text
covariates, but it can also work well on numerical cases to
filter out information that may amplify the bias in the treat-
ment effect estimation and improve the result. To validate this
claim, we evaluate the proposed method on the widely used
benchmark dataset IHDP.

Dataset
This dataset is from the Infant Health and Development Pro-
gram [Brooks-Gunn et al., 1992] targeting low-birth-weight,
premature infants. The treated group is provided with both
intensive high-quality child care and specialist home vis-
its [Hill, 2011]. The dataset also provides 25 covariates re-
lated to the children and their mothers. The outcome is the
infants’ cognitive test score, which is simulated by the setting
“A” of NPCI package2. Additionally, a biased subset of the
treated group is removed to create the correlation between the
treatment assignment and the covariates. In all, there are 747
records in the dataset, with 139 in the treated group and 608
in the control group.

Results and Analysis
Table 2 shows the results of our proposed method as well as
the baselines. Similar to the performance on News dataset,
our proposed method consistently performs best under all
three evaluation metrics, which demonstrates the effective-
ness of imposing the conditional adversarial-treatment learn-
ing.

4.4 Experiment on CFPB Dataset
Dataset
The dataset comes from Consumer Financial Protection Bu-
reau (CFPB)3. The CFPB solicits complaints from consumers
across a variety of financial products and then addresses those
complaints [Egami et al., 2018]. In this dataset, our goal is to
analyze the effect of the financial company’s public response
to the consumers’ disputation. In this dataset, we select the
following responses as three treatments:

2https://github.com/vdorie/npci
3https://www.consumerfinance.gov/data-research/

consumer-complaints/
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Type I Type II Type III

this account is old, and should have been re-
moved. it appears to have been transferred sev-
eral times, they mention continue to update as un
paid on my credit file, what for the rest of my
life. another threat involving my way of living.
amazing how I ’m following the law and getting
robbed and bullied, controlled.

Mortgage company failed to maintain
proper accounting and balance for escrow
and attempted to increase mortgage by
XXXX $400.00 per month on two occa-
sions. After multiple requests for an expla-
nation of increase, company is yet to pro-
vide consistent accounting.

Debt was paid multiple times due
to collection agency stating they
never received payment and refuse
to remove it from credit bureaus.
National credit systems owes me
money!

This collection agency, FOCUS RM, has placed
a debt on my credit report that is not mine. I re-
searched the company. Apparently they are scam
artists that place false debts that do not belong,
and they have done this to XXXX of people. The
debt on my credit report, which has ruined my
credit is not mine. I never even used XXXX.
Please shut this scam company down!

Credit Collection Services has attempted to
collect a debt from me for XXXX and I
never established a contract with this com-
pany, in addition this company has defamed
my name and character and reported false
information to both my XXXX and XXXX
credit report.

I am receiving letters from credit
collection services for XXXX bill
that I do not owe, I have never had
any accounts with XXXX.

All information matches except for the last four
of SSN ( XXXX ). The SSN they have on file (
XXXX ) is not mine but the name, address, phone
# is correct. I have requested that they remove me
from there dialer and cease contact with me until
they can prove this debt belongs to me.

This debt is in legal dispute at Superior
Court of XXXX XXXX. Also, it was sub-
sequently assigned to another Collection
Agency And both are showing on my credit
report. I have made repeated requests to
have this removed since it ’s been assigned
to another agency but nothing has been
done as of XXXX XXXX, 2015.

This company was found on my
credit report and I did not receive
any 30 day notice, any disclosure
to my physical address. They do
n’t have a court order, verbal ex-
press consent or written consent
with my authorized signature to re-
port on my credit report.

Table 3: Matched complaints. Each row contains three matched complaints.

Type I. The company believes it acted appropriately as autho-
rized by contract or law;
Type II. The company believes the complaint is the result of a
misunderstanding;
Type III. The company disputes the facts presented in the com-
plaint.
The treatment represents the company’s overall attitude in
dealing with the complaint. Different attitudes would affect
customers’ degree of satisfaction. The outcome is whether
the consumer disputed. In total, there are 15, 187 consumers
who receive the Type I response, 1, 512 consumers who re-
ceive the Type II response, 1, 468 consumers who receive
the Type III response. The covariates are consumers’ textual
complaints, and each complaint is represented as the average
of the word embeddings generated by Glove [Pennington et
al., 2014].
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Figure 3: Adjusted Mutual Information

Results and Analysis
Since the ground truth information on treatment effect is not
available in the CFPB Dataset, we examine the matching
quality of the paired complaints. Figure 3 shows the adjust
mutual information (AMI) [Vinh et al., 2010] between the
word occurrence and treatment assignment. Each point in the
figure represents one word, the value of y-axis represents the
AMI before matching, and the value of x-axis represents the
AMI after matching. It can be observed from the figure that
after matching, almost every word’s AMI is close to zero,
which indicates that our proposed method can effectively re-
move the information predictive to the treatment assignment.

Case Study
To better measure the matching quality, we show the matched
complaints in Table 3 to validate whether the matched pairs
are semantically similar or not. The length of compliants
varies, and due to the space limit, we only list three short
complaint pairs in the table. It is observed from Table 3 that
the matched pairs are similar in our human sense: in the first
row of Table 3, the three matched complaints are all about
unexpected debt charging or account balancing; in the second
row, the claims are all about wrongly placed debt or bill, and
in the third row, the complaints are all about an unauthorized
account.

5 Related Work
Due to its ability of estimating the changes in the outcome
after making the intervention on the treatment selection,
treatment effect estimation is prevalent across various do-
mains [Guo et al., 2018; Imbens and Rubin, 2015].

Among the existing treatment effect estimation methods,
few of them focus on the case where the dataset contains
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textual covariates. In [Egami et al., 2018], complimen-
tary to our problem setting, the authors consider the case
when the treatment or outcome is text, and present a frame-
work to estimate the effect of text or the effect on text.
In [Wood-Doughty et al., 2018], the text classifiers are in-
tegrated into the causal graph to recover the underlying dis-
tribution of other covariates, but the textual covariates are
not involved in treatment effects. In [Mozer et al., 2018;
Roberts et al., 2018], the authors adopt the topic model to rep-
resent the textual covariates and apply matching approaches
to estimate the treatment effect. However, the topic model
based matching approaches highly rely on the accuracy of
the topic model and also ignore the nearly instrumental vari-
ables contained in the topic representation. Compared with
existing approaches, our proposed CTAM method is flexible
to any text representation and is capable of filtering out the
information related to nearly instrumental variables, which
effectively decreases the estimation bias.

In terms of the nearly instrumental variable related meth-
ods, various methods have been developed to handle the nu-
merical covariates, such as covariate re-weighting [Kuang et
al., 2017a; Chang and Dy, 2017; Diamond and Sekhon, 2013]
and feature selection [Kuang et al., 2017b; Tibshirani, 1996;
Rassen et al., 2011]. In our work, instead of restricting the fil-
tering process on certain covariates, CTAM learns the latent
representation of all covariates with the information related
to the nearly instrumental variables removed.

6 Conclusions
Text data are almost everywhere in real life. However, few of
the existing treatment effect estimation methods deal with the
textual covariates. The major challenge of treatment effect
estimation with textual covariates is how to effectively filter
out the nearly instrumental variables which degrade the per-
formance of the treatment effect estimation. Existing covari-
ate selection or covariate re-weighting technologies cannot
handle the challenge due to the abundant information con-
tained in the textual covariates. Therefore, we propose a
novel conditional treatment-adversarial training based match-
ing method, named as CTAM. By imposing the conditional
adversarial training procedure, CTAM can learn the latent
representation of all covariates with information related to
near instrumental variables discarded. Through the experi-
ments on three datasets, it is demonstrated that our proposed
CTAM method can improve the treatment effect estimation
with textual covariates.
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