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ABSTRACT
Accurate rendering of diagnosis and prognosis for a disease
with respect to a patient requires analysis of complicated,
diverse, yet correlated risk factors (RFs). Most of the exist-
ing methods for this purpose are based on handcraft RFs by
calculating their statistical significance to the disease. How-
ever, such methods not only incur intensive labor but also
lack capability to discover or infer previously unknown com-
plex relationships and combined effects among correlated
RFs.

Nowadays, deep learning models have emerged as a hot
topic, due to its ability to automatically extract useful and
complex features from raw data. In this paper, we explore
the effectiveness of deep learning on medical data by build-
ing a deep learning based framework to analyze risk factors
and study its prediction performance in disease diagnosis.
Specifically, we investigate the application of deep learning
with a special focus on interpreting the latent features ex-
tracted or created from raw data by the model. Experimen-
tal results demonstrate that deep learning based methods
are able to aggregate features sharing same characteristics,
and reduce effects from unimportant and uncorrelated RFs.
The abstract features obtained by deep learning methods
can represent the essentials of raw inputs, and give a good
prediction performance in disease diagnosis.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Health; H.2.8 [Database
Management]: Database Applications—Data Mining
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1. INTRODUCTION
The wealthy data being captured in the healthcare pro-

cess provides unprecedented opportunities to improve dis-
ease diagnose and prevention. The Electronic Health Record
(EHR), which is a longitudinal electronic record of patient
health information, is a valuable source for exploratory anal-
ysis which can assist clinical and medical research. Features
of the EHR data can be converted to various risk factors
(RFs), such as demographics, family history, lifestyle and so
on. Risk factor analysis aims to assess the effect of potential
RFs to a target disease, and evaluate the risk of a patient in
developing the disease. With the success of selecting infor-
mative RFs which characterize a disease, patients can avoid
unnecessary tests, and change their modifiable RFs for dis-
ease control or prevention.

However, it is a challenging task to extract informative
RFs and capture the disease characteristics, due to the com-
plexity and diversity of the EHR data. The difficulty mainly
lies in two aspects. Firstly, the high-dimensional features
and imbalanced class distributions often restrict model per-
formance [18]. It is essential to properly reduce the dimen-
sionality of the feature space and maintain sufficient infor-
mation for accurate classification. Secondly, it is hard to dis-
entangle the salient integrated features from heterogeneous
information. Potential RFs may not be independent but
have correlations with others because of the shared reasons
behind them. It is possible that a single risk factor is not
important or does not have a direct causal relation to the
target disease, but its combination with other factors may
be the triggering or causal factor of that disease. Thus inte-
grated features cannot be ignored in the process of feature
selection.

A variety of RF analysis methods have been developed by
calculating the statistical significance of each potential RF.



Feature selection techniques based on regression or kernel
methods can be used to select informative RFs, so as to im-
prove estimator’s performance on high-dimensional datasets.
These methods focus on ranking the available features based
on the predictive power. However, these methods pay little
attention to the relationships among RFs and are often lim-
ited by explaining the selected features.

While these shallow models may struggle in correlated
RFs, deep learning models can often discover and disentan-
gle latent factors. Deep learning has achieved great suc-
cess in many fields. We may expect that deep learning
can achieve a similar good performance in the healthcare
area, with the application of discovering disease phenotyp-
ing, identifying risk factors, and disease risk prediction. Re-
cent work [13, 16, 7] has shown the potential utilization
of deep learning for healthcare data. However, unlike the
image data, healthcare data is more diverse and irregular
without obvious spatial or sequential structure. There are
many open questions when applying neural network on the
practical healthcare problems.

In this paper, the major question we want to understand
is, how a neural network represents latent features in dif-
ferent hidden layers. Unlike some domains where semantic
interpretation of intermediate or latent features that yield
final results may not be important, medical researchers do
like to understand the process of identifying and selecting
risk factors. This required transparency and need for inter-
pretability is what we attempt to solve in this paper. Un-
derstanding the latent features would help to study the cor-
relations of risk factors, disentangle integrated features, and
extract a good set of risk factors. As a particular disease
domain within the healthcare area, we focus on osteoporosis
dataset [1] and its related RFs.

Our contribution can be summarized as:

• We investigate the performance of pretrained neural
networks on health datasets. To understand the highly
abstract features that a neural network extracts, we vi-
sualize the contribution of risk factors to hidden units.
Both of the deep belief nets and stacked auto-encoder
models give some interesting patterns that contain la-
tent information of features.

• We conclude that deep learning has the potential to
analyze risk factors for osteoporosis fracture. Some of
the observed RFs may be caused by the same hidden
reasons and are strongly correlated. Deep learning is
used to find the shared reason of correlated RFs and
extract salient integrated RFs. By analyzing the hid-
den units of neural networks, we find out a set of infor-
mative RFs which are important to osteoporosis and
are supported by previous studies.

2. RELATED WORK
There are two main types of models to tackle problems of

risk factor analysis, as investigated by [16], either based on
expert knowledge or handcrafted feature set. The knowledge
based models usually fix a small amount of risk factors which
have been validated by experts in a certain field. These mod-
els may abandon valuable information from comprehensive
risk factors that are underestimated by experts. As for the
handcrafted feature set based models, the informative risk
factors are identified by calculating their statistical signifi-
cance. The basic idea of these feature selection methods is

to rank all available features based on the predictive power
in a specific condition. Regression models [4, 20, 24] such
as linear regression, logistic regression, Poisson regression
and Cox regression, are frequently used as the assessment
methods. Most of these methods consider the importance of
each feature separately, but lack the ability to evaluate the
integrated role of features.

Deep learning has demonstrated impressive results in vari-
ous areas, especially Computer Visionand Natural Language
Processing. Many experiments show that it is powerful at
extracting high-level abstract features which can better rep-
resent the essence of the original data [14]. Recently, the
applications of deep learning on healthcare datasets have at-
tracted a lot of interests from researchers. Recent works [13,
16, 7] have shown the potential utilization of deep learning
for healthcare datasets. These works utilize the architecture
with fully connected layers, either RBM or autoencoder, for
phenotype discovering and disease classification.

Despite that deep learning has demonstrated many im-
pressive results, it is still not clear of its internal opera-
tions and how they can achieve such performance. Previous
work [15, 23] has demonstrated that deep learning extracts
meaningful abstract concepts from simple inputs hierarchi-
cally: pixel, intensities, edges, object parts and objects. It
is interesting to understand how a deep architecture repre-
sents features for health datasets. Therefore, we apply the
approaches used from image researches to study the features
of health data each unit represents in hidden layers.

The study of the inner performance of neural networks
usually relies on visualization of features in each layer. [10]
explores the optimal input image for each unit using gradi-
ent ascent in the image space to maximize the unit’s activa-
tion. However, this requires careful initialization. [23] ad-
dresses the problem of convolutional network visualization,
by proposing a deconvolutional architecture (DeconvNet),
which aims to project feature activations back to the input
space from its output. Contemporary work of [21] demon-
strates DeconvNet reconstruction is equivalent to the gra-
dient back-propagation. From the experiment of [17] which
measures unit’s relevance to the predicted class, the perfor-
mance changes much faster by removing units with large
gradients than units with small gradients.

3. METHODOLOGY
There have been developed large numbers of different deep

learning architectures for various purpose and application
scenarios. Here we study the performance of two kinds of
widely used neural network architectures, deep belief nets
(DBN) and stacked denoising auto-encoder (SDA). Both of
the two architectures are based on fully connected bipartite
graphs, so that we can investigate all the potential risk fac-
tors. Some currently popular architectures, such as convolu-
tional neural network (CNN) and recurrent neural network
(RNN) which take advantage of the spatial or sequential
structure of data, are not suitable for EHR datasets because
EHRs may not have such spatial/sequential structure.

In this section, we first introduce the evolution of deep
learning models as the preliminaries of our framework. Af-
ter obtaining integrated features using the two well-trained
models, we perform two tasks: latent features analysis and
disease prediction. We first introduce the method to in-
vestigate the latent representation of hidden nodes. The
relations between latent features and input risk factors are



Figure 1: Shallow restricted Boltzmann machine including
one visible layer and one hidden layer.

analyzed. Then, we give the training procedure by taking
advantage of the labeled information for disease prediction.
To explore the prediction performance using different lev-
els of integrated features, we train the models with different
numbers of hidden layers.

3.1 Preliminaries

3.1.1 Restricted Boltzmann machine
RBM [12] is a generative stochastic graphical model which

learns a probability distribution over the inputs, with the
restriction that its visible units and hidden units form a
fully connected bipartite graph. A hidden unit hi captures
higher-order correlations of the visible units v connecting it.
An illustration of RBM is shown in Figure 1. RBM investi-
gates a representation of the input features, while requires
less hidden units to represent the problem complexity. The
training procedure minimizes the overall energy so that the
data distribution can be well captured. The energy of a
configuration of boolean vectors is defined as,

E(v,h) = −
n∑

i=1

m∑
j=1

Wijhivj −
m∑

j=1

bjvj −
n∑

i=1

cihi, (1)

where θ = W, b, c are the model parameters, m and n are
the number of visible units and hidden units. Joint probabil-
ity distribution of a configuration is defined via the energy
function

P (v,h; θ) =
1

Z(θ)
exp(−E(v,h; θ)), (2)

where Z(θ) is a normalizing factor called partition function.
The marginal distribution over the visible layer v is:

p(v; θ) =
1

Z(θ)

∑
h

exp(−E(v,h; θ)). (3)

3.1.2 Deep belief network
Although a shallow RBM (one layer RBM) can model

some hidden causalities behind input features, there may be
more reasons behind them (i.e. the reasons of reasons). To
sufficiently extract high level abstract features and explore
reasons behind the input features, we can stack more lay-
ers onto the shallow RBM to form a deep graphical model,
namely, a deep belief network [11]. DBN is a probabilis-
tic generative model which is composed of multiple layers
of stochastic, latent variables. DBN can be trained via a
greedy layer-by-layer procedure: one layer is added on top
of the network at each step, and only the top layer is trained

Figure 2: Autoencoder with an encoding and decoding pro-
cedure.

as a RBM using contrastive divergence (CD) strategy; after
each RBM has been trained, weights are clamped and a new
layer is added.

The bottom-up inference from the observed variables v
and the hidden layers hk follows a chain rule:

p(hl, hl−1, ..., hl|v) = p(hl|hl−1)p(hl−1|hl−2)...p(h1|v), (4)

where the conditional distribution of a unit hk in layer k can
be represent by a sigmoid function of n units in layer k− 1,

p(hk|hk−1) = σ(bkj +

n∑
i=1

W k
jih

k−1
i ). (5)

The top-down inference is a symmetric version of bottom-up
inference,

p(hk−1|hk) = σ(ak−1
i +

n∑
j=1

W k
ijh

k
j ). (6)

3.1.3 Stacked denoising autoencoder
Given an input x, an autoencoder constructs it to a hidden

representation y through a deterministic mapping, which is
an encoder process,

y = σ(Wx + b). (7)

The latent representation y is then mapped back into a
reconstruction z with a decoder,

z = σ(W ′y + b′), (8)

where z is of the same shape as x. An illustration of an
autoencoder is shown in Figure 2. Y is expected to be a
good representation of original input x, and therefore the
reconstruction error between z and x should be minimized.
The reconstruction error can be measured by the squared
error L(x, z) = ‖x− z‖2, or the cross entropy,

LH(x, z) = −
d∑

k=1

[xklogzk + (1− xk)log(1− zk)]. (9)

The training process minimizes the reconstruction error
using gradient descent. A denoising autoencoder [22] aims to
discover more robust features and prevent the hidden layer
from simply learning the identity. Therefore, the autoen-
coder is trained using a corrupted version of the input. The



Figure 3: Denoising autoencoder with the procedure of cor-
ruption, encoding, decoding and loss measurement.

Figure 4: Pipeline of the framework. The deep learning
models are trained using raw risk factors. After obtaining
integrated features which form an expressive representation
of the inputs, we perform two phases, feature analysis and
disease prediction.

corrupted input x̃ is mapped by a basic encoder to a hidden
representation, and reconstructed to z by a decoder. Since z
is a deterministic function of x̃ rather than x, the joint dis-
tribution p(x̃|x) is involved in calculating the reconstruction
error. An illustration of a denoising autoencoder is shown in
Figure 3. Previous experiments [22] show that the denoising
autoencoder has a better ability in finding interesting filters
on MNIST samples. Stacked denoising autoencoder is a deep
network formed by stacking several corrupted autoencoders,
by feeding the output representations of one autoencoder as
the input of the autoencoder on the top of the current layer.
Similarly to DBN, SDA is trained via a layer-wise procedure.

3.2 Model pipeline
The pipeline of our framework includes two main compo-

nents which can be described in Figure 4. The deep learning
models are first trained on the original dataset of a target
disease with numerous potential risk factors. Specifically,
we train the model using different numbers of layers, in or-
der to investigate the prediction performance of different
levels of latent features. It is expected that higher-level la-
tent features extracted by deep learning models can better
represent the data distribution, and yield better prediction
performance. A well-trained model contains multiple lay-
ers of integrated latent features. The training model can be
seen in Figure 5. The input layer contains raw risk factors of
a healthcare dataset, such as age, gender, medication usage
and so on. The hidden layers are either formed by RBMs or
autoencoders. On top of the layers, we use logistic regression
to classify positive and negative samples.

The first aspect of our work is to analyze the integrated
latent features, and understand how a neural network sys-
tem represents risk factors for a target disease. This task
is performed by visualizing and interpreting the contribu-

Disease prediction

Logistic regression

RBM/Autoencoder

RBM/Autoencoder

……

Figure 5: Deep learning Architecture. There are several
hidden layers. The latent representations are trained by
RBM and autoencoder separately. On the top of the layers,
a classifier is added to make use of the labeled information.

tion of each input feature to the hidden units. Gradients
of the output values in a hidden unit to its inputs are used
to rate the importance of each input feature to a unit, by
measuring how the latent features are distributed among
the visible inputs. We then analyze the coherence among
those risk factors which are rated as important, by looking
up the categories each of them belongs to. Potential risk
factors are manually separated into several categories, and
risk factors in the same category are assumed to have strong
correlations. Therefore, the latent features each hidden unit
represents can be visualized using the visible risk factors. In
this process, the category information is only used to vali-
date the performance of the model.

The second aspect of our work aims to explore the ne-
cessity of deep learning in predicting the risk of a disease.
A shallow RBM or autoencoder can get a sense of how the
data is distributed, so as to capture some basic character-
istics of the original data. It is expected that multi-layers
can enhance this representation ability by using the opti-
mally weighted, non-linear combination of the lower layers.
We wonder if highly abstract features learned by a multi-
layer model are more expressive than the integrated fea-
tures learned by a single-layer model for healthcare datasets.
Therefore, we train the deep learning models with different
numbers of layers and compare their performance results, in
order to evaluate the effect of using one and multiple layers.
Moreover, we compare the pretrained neural network mod-
els with traditional classifiers trained on raw input features
to evaluate the significance of deep learning.

3.3 Analyzing latent features
Latent features extracted by a hidden layer is an inte-

grated representation of visible inputs, which captures the
intrinsic characteristics of the inputs. It is known that the
latent feature extracted by a hidden layer is an integrated
representation of visible inputs. In image datasets, deep
neural network learns abstract feature hierarchically, from
pixel to edges and corners, and finally the object. We won-
der how a deep neural network represent features on EHR
datasets which have no spatial information.



Figure 6: Connections between inputs and hidden layers.
Weights involved in calculating gradient ∂gk/∂vi are marked
red.

We investigate a latent feature by calculating the con-
tribution of all visible risk factors connecting to it. This
contribution score is measured using the gradient of a la-
tent node with respect to each of the input features. Since
a gradient may measure the change rate for a point o in dif-
ferent directions denoted as x, if a dimension xi has a large
gradient change, o will be affected much more than x′i with
weak gradient. Therefore, the gradient quantitatively mea-
sures the contribution of each input feature to a latent node,
which can be used for ranking and evaluating risk factors.

The gradient
∂hj

∂vi
can be calculated as an intermediate

step during backpropagation:

wij = wij + λ
∂J

∂wij
, (10)

where wij is the weight connecting vi and hj , and J is the
loss function measuring the error between the target and
prediction. The derivative of the loss function is calculated
using the chain rule [3]:

∂J

∂wij
=

∂J

∂hj

∂hj

∂vi

∂vi
∂wij

, (11)

where hj is the activation function hj = f(
∑
wijvi +bi) and

f is the sigmoid function. Therefore, the gradient connecting
layers has already been calculated in the process of learning.
For a single layer model, the gradient between two layers
measures the relevance of the visible layer to the hidden
layer. It is derived based on applying derivative on hj ,

∂hj

∂vi
= hj(1− hj)wij . (12)

The relative quantity of inputs’ contribution to the first
layer is dominated by the weight W. Thus we get the same

results either using weight wij or gradient
∂hj

∂vi
. To measure

the connection of higher layers with the inputs, the gradient
of the lower layers should be involved, as shown in Figure 6.
For a unit gk in the second hidden layer, the contribution
from vi is measured as,

∂gk
∂vi

=
∑
j

∂gk
∂hj

∂hj

∂vi
=

∑
j

gk(1−gk)wkjhj(1−hj)wij . (13)

For every hidden unit using Equation (12) or (13), we
can get an importance score vector so that we can rank all
the potential risk factors. The procedure of analyzing latent
features is shown in Algorithm 1.

Algorithm 1 Understanding latent features.

train a deep learning model
for each hidden node oi do

for each input RF fj do
calculate the importance score using Equation (12)
or (13)
find out the category fj belonging to

end for
visualize the score of all features
interpret the characteristics of important features

end for
measure the coherence of latent nodes

To understand the relations among the important RFs ex-
tracted by hidden layers, we evaluate our models using the
information already known from feature semantics. During
data preprocessing, various input RFs are manually cate-
gorized into several groups based on their semantics and
characteristics (see Section 4.1 for details). The importance
score of input RFs can be visualized by assigning grey levels
to each RF, with the darker ones for more important RFs,
and the whiter for unimportant ones. We then interpret the
latent features learned by deep learning through the cate-
gories of its important RFs, in order to understand the rep-
resentation performance of neural network architectures. In
this paper, the category information is only used for under-
standing latent features obtained by neural networks, and is
not involved in the training procedure.

To quantitatively measure the coherence of features deep
learning model extracts, we calculate the entropy for all the
hidden units in one layer: firstly, for each unit, the RFs are
ranked in a descending order according to their importance
scores; then for the top-k features of each unit, we look up
the categories each feature belongs to; after that, entropy is
calculated to measure the purity of the important features
for the nodes,

Entropy = −
N∑
i

Ci∑
j

Aij

Ai
log

Aij

Ai
, (14)

where N is the number of hidden units, Cj is the number
of categories which contain any of the top-k features of unit
i, Ai is the number of top scored features in unit i, and
Aij is the number of features in unit i which also fall into
category j. Here we measure top-10 risk factors for every
unit in the last hidden layer. Thus Ai is fixed to be 10 in
our experiment.

The entropy is a measurement of impurity, with small en-
tropy meaning pure system. If one unit is dominated by a
diverse category distribution of RFs, which means that the
important features are from different categories and there
is a weak coherence of features extracted by this node, so
that the entropy will be high. To evaluate that the hidden
nodes tend to capture coherent RFs, we compare the en-
tropy values of the two deep learning models and a network
containing randomly selected RFs.



3.4 Disease prediction on integrated features
The training procedure to obtain integrated features and

predict disease includes two stages: pretraining and finetun-
ing. Both RBM and auto-encoder are unsupervised training
procedures. This procedure aims to capture the distribu-
tion and characteristics among all the inputs. Both DBN
and SDA are trained in the greedy layerwise procedure: af-
ter training the k-th layer with minimized reconstruction
error, the representation of the k-th layer is used as the in-
put for the (k + 1)-th layer. This pre-training procedure
has been shown to yield obviously better local minima than
random initialization [5]. After obtaining a representative
initialization point established by pre-training, a classifier
such as logistic regression or SVM can be added on top of
the network. We take advantage of the labeled informa-
tion to train our model in a supervised fashion, naming as a
fine-tuning stage. Errors between the predicted result and
groundtruth are backpropagated from top to bottom and
minimized through gradient descent to update model pa-
rameters to a better state.

The process of training is shown in Algorithm 2. To re-
duce random error introduced by the samples, 5-fold cross
validation is conducted throughout our experiment. The
prediction performance is measured by area under curve
(AUC) of receiver operating characteristic curve (ROC) and
precision-recall curve (PR). The larger AUC value indicates
a better performance (an AUC of 1.0 indicates a perfect
performance).

Algorithm 2 training algorithm for risk factors.

Input: All risk factors, learning rate, hidden layer structure
Output: Model parameters θ

Pre-training stage
Randomly initialize θ
for each layer hl do

RBM: run contrastive divergence to maximize likeli-
hood
Autoencoder: run gradient decent to minimize recon-
struction error
clamp θl of current layer

end for
Fine-tunning stage
for each epoch do

for each sample do
calculate cost c between predicted label and ground
truth
perform backpropagation to update θ
c′ is larger than c′−1 for d rounds
break

end for
end for
repeat the above for 5 times

Using the above training procedure, models with different
numbers of layers are trained and compared. Multi-layer
models are expected to have better performance than using
a single layer, since high-level abstract features are often
more expressible.

4. EXPERIMENTS
To analyze the performance of neural networks on a health-

care dataset, we study two neural networks on an osteo-

porotic fracture dataset. The neural networks in our ex-
periments are implemented and modified from Theano [6].
Through visualizing the gradients of nodes in each hidden
layer, we find that a pretrained neural network tends to ag-
gregate features sharing same hidden reasons for the tar-
get disease, and reduces the contributions from unimportant
and uncorrelated features. This behavior of neural networks
can be used to select informative risk factors, and analyze
the interactions among them. To quantitatively evaluate
the proposed models’ performance, we propose a measure
of entropy and show that both models have a small entropy
in comparison to the randomly generated network models,
which indicates the interpretation is meaningful. Different
levels of the representations of raw inputs are used to predict
the risk of developing osteoporosis disease.

4.1 Dataset
The Study of Osteoporotic Fractures (SOF) [1] is the

largest and most comprehensive study focused on risk fac-
tors of bone diseases. It includes 20 years prospective data
about osteoporosis of 9704 Caucasian women aged 65 years
and older. Potential risk factors and confounders were clas-
sified into several groups such as demographics, family his-
tory, medical history, and so on. Detailed description for
each risk factor can be found from the SOF website. Poten-
tial RFs are organized into 672 variables which serve as the
input of our model. The labels are processed on the Dual-
energy x-ray absorptiometry (DXA) scan results on bone
mineral density (BMD) measure. Based on the WHO stan-
dard, T-score of less than BMD -1.0 indicates the osteopenia
condition that is the precursor to osteoporosis, which is used
as the positive label. In this study, there are 5708 positive
cases with osteopenia condition and 2366 negative cases with
non-disease condition. The 1630 unlabeled cases are used in
the unsupervised training process.

4.1.1 Data preprocessing
In order to better analyze feature relations, we adopt those

features with a high coverage. Columns (features) with more
than 30% missing values are removed, such that there are
411 features remain; then a column-wise mean is calculated
to fill out the blank for the surviving columns.

The 411 input risk factors are not independent with each
other. Some of the RFs are interacted and may have a com-
bined effect to the disease. To evaluate the features ob-
tained by our model, we manually categorize all the RFs
into several groups based on their semantics. For exam-
ple, a category lifestyle, contains several subcategories such
as exercise, drink, smoke, etc.; a subcategory drink contains
several RFs such as drink amount per week/year, alcohol in-
crease or not, etc.; a subcategory exercise contains RFs such
as low/medium/high intensity activity per year/at different
age and so on. Features in the same category are assumed
to have stronger correlations than those from different cat-
egories. Table 1 shows the categories and subcategories we
have for all the RFs. This categorization information is not
involved in our proposed methods, and it is only used for
evaluating latent features obtained by neural networks.

4.2 Risk factor analysis

4.2.1 Analysis of latent features
The analysis of latent features aims to understand the per-



Table 1: Categories and subcategories of potential risk factors.

Categories Subcategories
Anthropometric weight, height, body
Demographics district

Endpoints/Outcomes post fracture, fracture time
Exam Bookkeeping bone mass

Family History father, mother
Female History pregnant, breast cancer, menopause

Fractures and Falls History fracture, mother fall, sister fall, fall
Lifestyle drink, smoke, nutrition, caffeine, exercise,

walk, sitting/sleeping
Medical History diabetes

Medications thyroid, estrogen, medication usage
Vertebral fractures 4mm vertebral fractures
Physical Function walking difficulty, climbing difficulty,

back pain, housework, IADL
Physical Performance arm aid, strength, step, tandem, turn

Quality of Life life quality
Visioin eyes vision

Vital Signs blood pressure

formance of the neural network models on the osteoporosis
dataset, and identify salient integrated RFs that are impor-
tant to the disease. Although we are not dealing with im-
age dataset which has a clear spatial message, the features
of EHR data can be visualized based on their importance
score. As discussed in Section 3.3, the importance score of
a RF is the gradient of the latent representation in a hidden
unit with respect to this RF.

In this section, we demonstrate the gradients of several
hidden units in terms of the input features, in order to un-
derstand the information of latent features in each unit. The
gradients are calculated following the approach described
in Section 3.3. For nodes in the first hidden layer, either
weights or gradients can be used to visualize the importance
of inputs. For nodes in the second layer, gradients con-
necting each node and inputs are calculated via the chain
rule, combining the non-linear relations from the two layers.
Since the RFs may have positive or negative effects on the
disease, we rank the absolute value of gradients to measure
the importance of the corresponding RFs.

Figure 7 shows the visualization of feature importance to
one node. The y-axis shows the names of different subcat-
egories, and x-axis is the feature index in each subcategory.
The scores are normalized to [0,1]. Since the numbers of
features in different subcategories are not the same, vacant
positions are filled with 0. In the figure, each grid stands for
the score of gradient connecting with one input feature. For
example, weight subcategory contains 6 RFs which corre-
spond to the first 6 grids in the x-direction with y=’weight ’,
and the remaining grids in this line are directly filled by 0;
Drink subcategory contains 22 RFs so that the first 22 grids
with y=’drink ’ are not directly filled by 0. The grey level
of each grid indicates the importance of an RF to a given
node: the darker grid means larger gradient which is more
important, and the whiter one is less important. Therefore,
we can see that risk factors related to exercise contribute
much to this hidden node. In other words, this node col-
lects information from the exercise subcategory and reduces
the impact from other subcategories. From Figure 7, RFs

Figure 7: Visualization of the importance scores in one in-
ternal node in the first layer.

Table 2: Informative RFs identified by a hidden node.

Index Variable Description
7 PACT50 participate physical activity at age 50?
8 PACT30 participate physical activity at 30?
9 PACTTA participate physical activity in teenager?
18 L30INT times of low intensity activity at 30
19 M30INT times of medium intensity activity at 30
21 TTOT30 times of any intensity activity at 30
28 30TMWT activity times weighted by intensity at 30

in exercise indexed 7, 8, 9, 18, 19, 21, 28 contribute much
to this hidden node. The important risk factors identified
by this node are shown in Table 2 with their indexes in the
category, variable names and semantics descriptions. From
variable descriptions in Table 2, we see that these variables
are closely related in semantics, and they are all important
to the hidden node. Therefore, we conclude that this node
identifies the informative risk factors related to excercise.

Figure 8 shows the visualization of selected hidden nodes
in the two hidden layers of DBN. Each subfigure contains
the gradient values of the input RFs to one node. The y-



Table 3: Coherence measurement.

DBN SDA random
entropy 12.935 11.018 26.193

axis of these subfigures is the same as Figure 7, without the
semantics for simplicity; the x-axis is also the same, which
contains the indexes of risk factors in one subcategory. In
Figure 8(a) which visualizes the first layer, each node seems
to be ”dominated” by a subcategory: features that are im-
portant to a node come out to fall into the same subcate-
gory. For example, the important subcategories aggregated
by each hidden node are: mother fall (mother ever break
or fracture a bone), drink, walking difficulty, post fracture
(any fracture post current visit), exercise, housework (diffi-
culty of doing housework), caffeine, back pain, and medica-
tion usage. For the second layer in Figure 8(b), we calculate
the gradient value using Equation 13. After visualizing each
feature’s score (the gradient value)in different subcategories,
we also check which category they belong to according to
Table 1. Therefore, we can find out that the important cat-
egories to the second layer are: physical function, lifestyle,
endpoints/outcomes, and fracture and fall history.

From the above results, we see that the units in the neural
network do select some informative RFs for osteoporosis.
Based on the universal rule used by RFAX [2] which is a
fracture risk assessment tool developed by WHO, some risk
factors such as previous fracture, alcohol intake, and family
history have already been shown to link to bone fracture
risk. Besides, some of the physical and lifestyle features such
as exercise, walking difficulty, and caffeine are examined as
risk factors for osteoporotic fractures [9, 8]. As can be seen,
these risk factors are selected by the proposed models.

Visualization for nodes in SDA is shown in Figure 9. From
Figure 9(a), we find that the important features to nodes in
the first layer are: drink, mother fall, walking/climbing dif-
ficulty/IADL (total difficulty), exercise, post fracture, back
pain, fracture and post fracture, medication usage, and caf-
feine. Using the same way for DBN, we can see that Fig-
ure 9(b) indicates the important categories for the second
layer, including endpoints/outcomes, lifestyle, fracture and
fall history, and physical function.

Figure 8 and 9 give the visualization of RF contribution
for selected hidden nodes. There are totally 100 nodes in the
first hidden layer and 10 nodes in the second hidden layer.
Other nodes not shown in the figures either have similar
patterns or identify the same important categories as those
listed in the figures, and also, there are some nodes which
do not show this sparse distribution of importance scores.
Although the two deep learning models, DBN and SDA give
different visualization patterns, the informative feature cat-
egories they select are almost the same, and match some
previous studies.

The quantitatively measurement of our models are shown
in Table 3. We use information entropy as defined in Equa-
tion 14 to calculate the coherence of the latent features ex-
tracted by neural networks. Comparing to randomly scatter-
ing RFs into nodes in a network, deep learning models have
a smaller entropy, which means that deep learning models
tend to aggregate features with some similar characteristics
rather than distributing features randomly among nodes.

(a) Nodes in the first layer

(b) Nodes in the second layer

Figure 8: Visualization of importance scores of some nodes
in the first and second layer of DBN.

4.3 Osteoporosis prediction
The results for different data representations on the os-

teoporosis dataset are shown in Table 4. The performance
of applying SVM on raw features and pretrained neural net-
works with different layer numbers are compared. As in-
troduced in Section 3.4, we first use a shallow RBM/auto-
encoder and two-layer DBN/SDA for unsupervised training,
then add labeled information to the four models for super-
vised training. The SVM classifier is implemented using
Python scikit–learn library [19]. Area under ROC and PR
curve are used to measure the prediction performance of
models.

From Table 4, we can draw the following conclusions: (1)
RBM-based and SDA-based methods give pretty good per-
formances. This is due to the fact that these methods can
automatically learn high-level feature representations from
raw risk factors by leveraging their deep structure. (2) Both
the 2-layer RBM and SDA methods improve the perfor-
mance of corresponding single-layer methods. This benefit
is brought by the ability of these methods to learn high-level
relations layer-by-layer among raw risk factors. These exper-
imental results also confirm the analysis of latent features in



(a) Nodes in the first layer

(b) Nodes in the second layer

Figure 9: Visualization of importance scores of some nodes
in the first and second layer of SDA.

the previous section. (3) The two-layer neural network mod-
els outperform SVM which is applied on the raw input RFs.
This shows that a pretrained neural network can better un-
derstand the hidden relations among input RFs, and better
represent the information embedded in the EHR dataset.

In this section, we observe that deep learning methods
improve the predication accuracy on osteoporosis data. In
practice, healthcare datasets can contain more complicated
and unstructured information in forms of text, image and
voice. In the future, we plan to apply the proposed methods
to these more complex datasets.

5. CONCLUSION AND FUTURE WORK
It is a challenging task to analyze the complicated and

highly correlated relationships among numerous potential
risk factors. Existing approaches on handcraft RFs usually
focus on the prediction performance of different RFs, but
ignore the interactions and synthetic roles of them. In this
paper, we propose to use deep learning models to analyze
risk factors. Two widely used deep architectures, DBN and
SDA are studied in our experiments. The two models show

Table 4: Prediction results.

AUC-ROC AUC-PR
SVM 0.846 0.928

shallow RBM 0.841 0.921
2-layer DBN 0.865 0.936

shallow autoencoder 0.846 0.926
2-layer SDA 0.864 0.935

that different deep learning models share general character-
istics on healthcare datasets.

There are many open questions when applying deep learn-
ing to EHR datasets. One interesting question related to
risk factor analysis is how a deep architecture represents
input RFs in each layer. Therefore, we investigate the inter-
nal performance of neural networks, in order to understand
the information contained in latent features. The compo-
sition of a latent feature is visualized using the importance
score which measures each RF’s contribution to the latent
node. Through visualizing hidden nodes in different layers,
we find that both of the two deep learning models tend to
aggregate correlated informative RFs while reducing the ef-
fect from other noisy RFs. The informative RF categories
represented by hidden nodes are endorsed as important by
previous medical studies. Both the hidden unit visualization
and entropy measurement indicate that deep learning mod-
els do not learn healthcare features randomly, but have an
ability to redistribute features and extract high-level repre-
sentation for the inputs.

We have also trained models with one and two layers, and
compared their performance in disease classification. Multi-
layer models are more expressive and high-level abstract fea-
tures can better represent the essentials of raw inputs, yield-
ing better performance. The performance of applying SVM
on raw RFs is also compared with results from DBN and
SDA. It shows that features extracted by a pretrained neu-
ral network can better represent the information embedded
in the EHRs, and give more effective predictions of osteo-
porosis disease.

In the future work, we plan to further study and develop
the neural network models with the application in health-
care area. One application is to investigate deep learning for
multiple diseases prediction. Different diseases may share
some joint reasons, and deep neural networks can often dis-
cover and disentangle these latent reasons. It is an encour-
aging and challenging task to build a disease phenotype base
that can better represent multiple diseases. Moreover, deep
learning models can be further developed for healthcare ap-
plications by incorporating the external knowledge from ex-
perts. It is expected that the existing medical knowledge
can help deep learning models to better diagnose certain
diseases.
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