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Abstract—Human activity recognition (HAR) is crucial for
real-world applications such as healthcare, surveillance, and
smart homes. Among sensing technologies, millimeter wave
(mmWave) sensors stand out due to their contactless nature, high
sensitivity, and ability to operate in low-light environments while
preserving privacy. However, the scarcity of mmWave sensing
data limits the generalizability of mmWave-based HAR systems.
To address this, we propose mmAP, a data augmentation and
pretraining framework that synthesizes a large mmWave dataset
using human mesh data, followed by pretraining a robust and
general mmWave heatmap encoder using a multi-modal masked
autoencoder framework using the synthesized data. We enhance
the model’s robustness with heatmap-specific data perturbations
and perform task-specific fine-tuning on a small real-world
dataset. The experiment results over the baseline demonstrate
the effectiveness of the proposed mmAP framework.

Index Terms—mmWave Sensing, Human Activity Recognition,
Data Synthesis, Masked Model Pretraining, Multi-modality

I. INTRODUCTION

As the demand for intelligent systems that enhance human
life continues to grow, human activity recognition (HAR)
has become essential for understanding human behavior, sup-
porting applications in healthcare [1], surveillance [2], smart
homes [3], etc. Among various sensing technologies, wireless
sensing has gained significant attention due to its contactless
nature, offering a new paradigm in human activity monitoring.
The mechanism of wireless sensing relies on the interaction
between wireless signals and the sensing target: as signals
propagate, their characteristics, such as phase, amplitude, and
frequency, are affected by the target. By analyzing these
changes, target-related information, including human activity
or gesture, can be captured and analyzed to infer activities.
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Among all the wireless sensing techniques, millimeter wave
(mmWave) sensors, operating at high frequencies (30-300
GHz), have emerged as a promising solution for HAR. Their
large bandwidth and short wavelength enable high sensitiv-
ity, precision, and advanced capabilities such as beamform-
ing, providing significant advantages over traditional low-
frequency sensing methods like Wi-Fi, UWB, and LoRa.
Notably, compared to camera-based solutions, mmWave-based
sensing technology excels in poor lighting or complete dark-
ness, penetrates obstacles, and addresses privacy concerns
inherent to visual data capture. Unlike wearable sensors,
mmWave systems eliminate the discomfort and inconvenience
of wearing extra devices, offering a seamless and non-intrusive
approach to HAR. Additionally, the low cost, compact size,
and low power consumption of mmWave radar devices make
them well-suited for integration into environments such as
homes [4] and robots [5], promoting widespread adoption.

Despite its promising potential, the generalizability of
mmWave-based HAR remains limited, primarily due to the
scarcity of available mmWave sensing data. Collecting such
data is a labor-intensive and time-consuming process, requiring
specialized hardware and software, extensive participant in-
volvement, and precise synchronization and calibration, which
renders large-scale data collection extremely challenging. To
address this challenge, we propose mmAP, a mmWave-based
data augmentation and pretraining framework designed to
enhance model performance for mmWave-based HAR tasks.

The proposed framework incorporates several key com-
ponents to address the challenges of mmWave-based HAR.
First, to mitigate data scarcity, we perform cross-modality
data synthesis by generating a large mmWave dataset from
a large-scale human mesh dataset. Following the approach
of mmGPE [6] and mmCLIP [7], which simulates mmWave



signal reflections on the surface of the human body, we
enhance this method by utilizing a large-scale human mesh
dataset [8], rather than relying on motion capture data [9],
[10], to simulate more diverse and general activities. Second,
to exploit the potential of this synthetic dataset, we pretrain
the model encoder using a multi-modal masked autoencoder
with a high masking rate. Based on the synthesized data,
we generate multiple types of signal heatmaps that capture
different physical attributes, such as range, velocity, and angle
information of the subject. These heatmaps are treated as
distinct data modalities, allowing us to leverage a multi-
modal masked autoencoder [11] to train a robust heatmap
encoder. To adapt the autoencoder for heatmap inputs, we
use a temporal masking strategy, masking heatmaps along
the time dimension to enable the encoder to learn temporal
signal information effectively. Third, to bridge the gap be-
tween simulated and real-world data, we conduct task-specific
fine-tuning using a small real-world dataset, incorporating a
classification head for activity recognition. Lastly, to further
enhance model robustness, we utilize heatmap-specific data
perturbation techniques during both pretraining and fine-tuning
phases. Data perturbation, a common strategy in deep learning,
involves artificially expanding the training dataset through var-
ious transformations to improve robustness and reduce overfit-
ting. However, applying data perturbation to mmWave signals
presents unique challenges, as these signals lack the intuitive
interpretability of images. In our framework, we apply three
types of data perturbations based on the properties of signal
data: adding Gaussian noise, vertical rotation of heatmaps, and
temporal cropping and expansion. These techniques introduce
variability, helping the model better generalize to real-world
scenarios.

In conclusion, the main contributions of this paper are
summarized as follows:

• We introduce mmAP, a novel mmWave-based data aug-
mentation and pretraining framework aimed at improving
model performance for mmWave-based HAR tasks.

• We develop a method to train a robust mmWave heatmap
encoder using a multi-modal masked autoencoder com-
bined with data perturbation techniques.

• We validate the effectiveness of the proposed mmAP
framework by creating a real-world human activity recog-
nition testbed utilizing commercial off-the-shelf (COTS)
mmWave devices and collected real-world data.

II. RELATED WORKS

A. Human Activity Recognition using mmWave

Recent advancements in deep learning have driven the
development of numerous mmWave-based sensing systems
to “observe, detect, analyze, and interact” with the human
body, enabling precise and pervasive human sensing capabil-
ities [12]. The task of mmWave-based human activity recog-
nition is extensively explored by [13]–[15], which leverages
signal processing techniques to transform signal attributes into
formats suitable for neural networks. Despite their success,
these methods commonly face the limitation of requiring

extensive real data to model training, which poses significant
challenges in real-world scenarios where large-scale data col-
lection is often impractical. Different from their works, our
proposed framework leverages the synthesized data for the
model pertaining which reduces the data required during the
training of the classifier.

B. Masked Model Pretraining

Masked Image Modeling (MIM) [11], [16], [17] has become
a powerful self-supervised pretraining strategy, inspired by
Masked Language Modeling (MLM) [20]–[22] in NLP. In
MIM, models are trained to reconstruct missing parts of an
image by learning from the unmasked regions. Among the
MIM approaches, Masked Autoencoders (MAE) [16] is a
leading approach, where a transformer-based model is trained
to predict masked image patches, using a high masking ratio.
This forces the model to learn generalizable global or context
features, which can be effectively fine-tuned for tasks like clas-
sification and segmentation. Beyond MAE, MultiMAE [11]
extends this approach by handling multiple modalities (e.g.,
RGB, depth, and segmentation maps) and tasks simultane-
ously. MultiMAE trains the model to reconstruct masked
patches across different modalities, making it more versatile
and efficient in multimodal learning environments. This multi-
task, multi-modal learning strategy improves the generalization
capabilities of the model, especially in scenarios requiring
multimodal input. These pretraining strategies demonstrate
strong transfer learning potential, allowing models to be fine-
tuned on various downstream tasks with minimal labeled
data. In our paper, by leveraging a similar masked modeling
strategy, our proposed model can capture rich, generalizable
features that are crucial for tasks where labeled data is scarce
or expensive to obtain.

C. Signal Data perturbation

Unlike images in computer vision, wireless signals con-
tain significant variability due to their interactions with the
environment, device placement, and user movements. Thus,
perturbating wireless data must go beyond simple data trans-
formations and should consider the physical properties and
environmental characteristics of the signals. Several studies
have developed unique data perturbation approaches tailored
for wireless sensing applications. In RFBoost [18], a physical
data perturbation framework was proposed for WiFi sensing,
aiming to address data scarcity by leveraging the inherent data
diversity of wireless signals. Specifically, RFBoost utilizes
techniques based on time-frequency spectrograms of WiFi
signals, exploring data diversity across different subcarriers,
antennas, and time windows. By generating multiple infor-
mative spectrograms and effectively mixing them, RFBoost
can significantly boost the dataset size, thereby improving
model performance without additional data collection. For
mmWave-based wireless sensing, a different approach to data
perturbation has been proposed, as seen in the DI-Gesture
system [19]. This method employs transformations like geo-
metric translations, scaling, and noise elimination to simulate



different distances, angles, and movement speeds of human
gestures. The perturbation framework is carefully designed to
account for specific characteristics of mmWave signals, such
as varying angular resolution and radiated power, making it
particularly effective for enhancing robustness in challenging
scenarios like extreme sensing angles.

III. METHODOLOGY

A. Overview

In this section, we present an overview of our proposed
mmAP framework, designed to address the data scarcity
challenges inherent in mmWave-based HAR by integrating
cross-modality data synthesis, multi-modal masked autoen-
coder pretraining, task-specific fine-tuning, and heatmap-based
data perturbation. The framework begins by synthesizing a
large-scale mmWave radar signal dataset from an extensive
3D human mesh dataset [8], compensating for the limited
availability of real-world data. This synthetic dataset is then
used for pretraining the model’s encoder with a multi-modal
masked autoencoder [11], utilizing an 83% masking rate to
encourage learning robust cross-modal representations by pre-
dicting missing information from other modalities. To further
enhance robustness, we apply heatmap-specific data perturba-
tion techniques—including Gaussian noise addition, vertical
rotation, and temporal cropping and expansion—during both
the pretraining and fine-tuning phases. Finally, we perform
task-specific fine-tuning using a small real-world dataset,
incorporating a classification head for activity recognition
to bridge the gap between simulated and real-world data,
ensuring accurate recognition and classification of human
activities.

B. Data Synthesis

The objective of this paper is to develop a robust and
efficient framework for Human Activity Recognition (HAR)
using mmWave radar signals. Collecting real-world mmWave
radar data, however, is labor-intensive, requiring specialized
hardware/software setups, subject participation, and meticu-
lous environment preparation. These demands pose significant
challenges in building a comprehensive mmWave radar dataset
for training a robust human activity recognition model. To
address this issue, we propose to leverage cross-modal signal
synthesis which can simulate large-scale realistic synthesized
mmWave radar signals from extensive 3D human mesh data
using the physical simulator. The 3D human mesh data repre-
sents the human body through a collection of 3D triangulated
faces in virtual space, and it can be sourced from extensive
motion capture datasets or derived from large video datasets
using mesh estimation algorithms [8]. Recent works [6], [7]
have also demonstrated the feasibility of synthesizing realistic
wireless signals from the 3D human mesh data. With this
foundation, we are able to build a large synthesized mmWave
radar dataset for human activity recognition tasks, serving as
the data source for model pre-training.

Fig. 1. A simulation heatmap dataset was utilized as input for pre-training
the MultiMAE architecture, which processes multiple time-based heatmap
modalities such as time-angle, time-doppler, and time-range. The data is
divided into patches on the time dimension and linearly projected into tokens
of a fixed dimension before being encoded using a Transformer. Task-specific
decoders reconstruct the masked-out patches by initially performing a cross-
attention step from queries to the encoded tokens, followed by processing with
a shallow Transformer. The queries are composed of mask tokens, shown in
gray, with task-specific encoded tokens added at their respective positions.

C. Model Pretraining

To effectively capture the activity pattern and integrate
different input modalities from the mmWave signal, we fol-
low the idea of MultiMAE [11], a masked-autoencoder-like
unsupervised pretraining network designed to process masked
multi-modal data as input and reconstruct the masked patches.
This methodology allows the network to capture the intricate
features of human activities from mmWave signals, enhancing
the model’s ability to recognize and classify diverse activities
accurately.

Specifically, the inputs to the model are the three mmWave
heatmap modalities [7]: HA ∈ RA×T , HD ∈ RD×T , and
HR ∈ RR×T , which represent the time-angle heatmap, time-
doppler heatmap, and time-range heatmap, respectively. The
x-axis of these heatmaps represents time, while the y-axis
captures the angle, doppler, and range information relevant to
the subject’s activity. Each heatmap is essentially a temporal
concatenation of observations from consecutive timestamps.
Different from the image-based patching solutions [11], [16],
we segment the heatmaps into smaller vertical patches along
the time dimension and selectively mask portions of them,
taking into account all three heatmap modalities. This ap-
proach ensures that the physical patterns within each patch are
preserved. The unmasked patches are then linearly projected
into patch embeddings. These embeddings are subsequently
processed by a transformer encoder designed to capture the
inter-patch relationships. Considering that the self-attention
layer in the transformer is order-agnostic, we incorporate
positional encodings for each patch before feeding the patches
to the transformer encoder.

The output embeddings from the transformer encoder are
directed to modality-dependent decoders that aim to recon-
struct the masked patches based solely on the observations



from the unmasked patches. This cross-modal self-supervised
reconstruction process compels the model to learn cross-modal
relationships by effectively predicting missing information
in one modality using the available information from other
modalities, cultivating a robust feature representation for ac-
tivity recognition from the heatmap modalities.

D. Data perturbation

While the large synthetic dataset substantially mitigates
the data scarcity challenge associated with mmWave radar
datasets, additional data perturbation strategies can be em-
ployed to enhance data diversity and improve model general-
izability. Inspired by image perturbation techniques commonly
used in computer vision—such as adding noise, cropping,
and flipping—to train more robust deep learning models, we
propose three tailored perturbation strategies for mmWave
radar heatmaps. These strategies are designed to preserve the
physical validity of the heatmaps while introducing meaningful
variations: adding random Gaussian noise, row shifting, and
cropping & stretching. For the random Gaussian noise strategy,
we generate individual Gaussian noise for each input modality
heatmap and add this noise to the original heatmap. This
introduces variability and mimics real-world signal distur-
bances, enhancing the model’s noise tolerance. Row shifting
involves applying a cyclic shift along the y-axis of the time-
range heatmap. This adjustment reflects real-world scenarios
where the subject may perform the same activity at different
locations, while maintaining consistent patterns in time-angle
and time-doppler. Augmenting the time-range heatmap in
this manner increases the model’s robustness to variations
in activity distance across training and testing environments.
The cropping & stretching perturbation involves cropping a
segment along the time dimension of the heatmap and resizing
it to the original shape. This technique addresses variations in
activity speed, as it simulates performing the same activity at
different paces. This not only improves the model’s ability to
handle temporal variations but also its overall robustness and
generalizability.

E. Fine-tuning

The objective of this section is to fine-tune the model,
initially pre-trained with a large augmented synthetic dataset,
using a smaller set of real-world collected mmWave radar sig-
nals for a specific task. While the augmented synthetic dataset
effectively trains the model to robustly represent mmWave
radar signals, a discernible gap remains between the simulated
data and real-world datasets, which may impede the model’s
ability to accurately capture real-world radar features. Addi-
tionally, the model in the pre-training stage is class-agnostic; it
is designed to generate feature representations of the mmWave
radar signals without the capability to predict specific class
labels. Consequently, it is essential to incorporate an additional
stage that leverages real-world collected labeled data to fine-
tune the pre-trained model for a specific downstream task.

Specifically, we utilize the pre-trained model as a foun-
dation, initializing parameters and specifically training the

Fig. 2. A real-world mmWave dataset comprising 12 distinct activity classes
was employed. An additional linear task-specific classification head was fine-
tuned to predict the distribution of possible activities performed corresponding
to multi-modality input heatmaps. The classification head was in conjunction
with the pre-trained encoder parameters.

Fig. 3. The real-world testbed and the data collection scenario, where the
activity area and the mmWave radar are indicated.

last classification head with real-world data. This strategy
allows us to capitalize on the strong feature representability
from the pre-trained model to generate feature embeddings,
subsequently fine-tuning a classification head with minimal
parameters to predict the class labels. By focusing the fine-
tuning process solely on the classification head, we enhance
efficiency and mitigate the risk of catastrophic forgetting that
could arise from fine-tuning the entire model.

IV. EXPERIMENTS

A. Data Collection & Model Complexity

As illustrated in Figure 3, to train our mmAP model, we
conducted a data collection with 2 volunteers participating
in 12 activities within a laboratory setting. The radar was
positioned 1 meter above the ground, with activities performed
3 meters away. The activities included walking clockwise
and anticlockwise, standing, sitting down and standing up
from a chair, walking sideways, lunges, jogging, hand waving,
drinking water, clapping, waving both hands, and bowing.
Overall, we collected 256 data samples for each activity and
used half of them for training and half of them for evaluation.
All experimental procedures were conducted in compliance
with institutional IRB policies.



TABLE I
ACTIVITY CLASSIFICATION RESULTS

Model Setting Top-1 Accuracy (↑)
Plain Model 78.71%
Plain Model + Signal Perturbation 51.69%
Pre-training + Fine-tuning 82.23%
mmAP (time-angle only) 81.51%
mmAP (time-doppler only) 82.22%
mmAP (time-range only) 81.70%
mmAP 84.54%

Fig. 4. The confusion matrix for the final mmAP model setting comprising
pre-training on simulated data, followed by finetuning on real data for
the entire model, with signal perturbation applied during data loading for
both phases demonstrates enhanced classification accuracy and balanced
performance across all activity classes.

B. Model Settings

Plain Model: This baseline approach trains the model using
only real-world collected data.
Plain Model + Signal Perturbation: This approach integrates
data perturbation into the training process using real-world
collected data.
Pre-training + Fine-tuning: This approach utilizes a large
synthetic dataset for model pre-training, followed by fine-
tuning with real-world data, without incorporating data per-
turbation.
mmAP Single Modality Only: This baseline is similar to the
baseline Pre-training + Fine-tuning, however, only a single
modality is used as the model input.
mmAP: This is the full implementation of our proposed
mmAP framework, which includes synthetic data pre-training,
real-world data fine-tuning, and data perturbation strategies.

C. Activity Recognition Results

In this section, we evaluate the overall performance of our
proposed mmAP framework and compare it with baseline
approaches, as detailed in Table I. Our mmAP framework
significantly outperforms the baseline models, achieving the

Fig. 5. The figure demonstrates the mmAP network’s pre-training objective.
Original heatmaps serve as input and reconstruction targets, with variable
heights and fixed 128 as widths for each modality. Patches are dynamically
selected and partially masked. Validation heatmaps from a simulation dataset,
along with loss values, verify the model’s learning accuracy in self-supervised
conditions. The left side displays the final reconstructed results from the
trained model on real-world data.

best results among the configurations tested. It can be seen
that the baseline Plain Model, which trains solely with limited
real-world mmWave radar data, does not perform well. Due
to the limited real-world training data, the signal perturbation
performed on the plain model impairs the model performance.
In contrast, our pre-training and fine-tuning scheme substan-
tially surpasses the Plain Model, demonstrating the effective-
ness of using a large synthesized dataset for pre-training to
generate robust feature representations. This approach also
employs real-world data for fine-tuning, effectively mitigating
the simulation-to-reality gap. Additionally, in the proposed
mmAP model, signal perturbation has been demonstrated to be
a useful factor in enhancing model performance, significantly
increasing the model’s robustness against variations in activity
paces and locations. Furthermore, the performance of the
mmAP framework decreases when only one modality heatmap
is used as input. This outcome highlights the effectiveness
of the mmAP network, which strengthens multi-modal inte-
gration, underscoring the importance of leveraging multiple
modalities for improved accuracy and robustness.



D. Qualitative Reconstruction Results

In this section, we qualitatively evaluate the reconstruction
results from the mmAP model, as illustrated in Figure 5.
The rows from top to bottom display the time-angle, time-
doppler, and time-range heatmaps, respectively. The columns
from left to right depict the reconstructed heatmap alongside
the original heatmap. The reconstructed signals notably retain
the key semantic information from the original images, despite
a high masking rate. This demonstrates the model’s capability
to capture essential semantic structures from the real-world
heatmap, which facilitates robust feature representation learn-
ing from a limited dataset.

V. CONCLUSION

To address the scarcity of mmWave sensing data that limits
the generalizability of existing HAR models, we proposed
mmAP, a novel mmWave-based data augmentation and pre-
training framework designed to enhance model performance
for mmWave-based HAR tasks. By combining cross-modality
data synthesis, multi-modal masked autoencoder pretraining,
task-specific fine-tuning, and heatmap-based data perturba-
tion, mmAP effectively trains a robust and effective activity
recognition model. Our evaluations demonstrate that mmAP
significantly enhances model robustness and accuracy, thus
advancing the potential of mmWave-based HAR for real-world
applications.
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